全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于进化规划的Markov随机场参数的估计

, PP. 143-148

Keywords: Markov随机场,Gibbs分布,Gibbs抽样,进化规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

在应用Markov随机场作为先验模型对图像进行贝叶斯估计时,配分函数的难以计算使得对Markov随机场参数的估计存在着很大困难.为此,本文提出一种新的基于进化规划的参数估计法.该方法采用进化规划来寻求合适的参数,使得由该参数得到的生成图像和原始图像间的差异最小.该方法不仅可避免配分函数计算上的困难,而且从该参数出发还可得到最相似于(可完全吻合)原始图像的生成图像.在这一点上,该方法要明显优于以往传统的基于似然函数的参数估计法,如极大伪似然法.最终的实验结果也证实了该方法的可行性.

References

[1]  Besag J. Spatial Interactions and the Statistical Analysis of Lattice Systems. Journal of the Royal Statistical Society (Series B), 1974, 36(2): 192-236
[2]  Derin H, Elliott H. Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields. IEEE Trans on Pattern Analysis and Machine Intelligence, 1987, 9(1): 39-55
[3]  Lu M J, Wang R S. Reliable Image Segmentation Based on Markov Random Field Model. Acta Electronica Sinica, 1999, 27(2): 87-89 (in Chinese) (陆明俊, 王润生. 基于MRF模型的可靠的图像分割. 电子学报, 1999, 27(2): 87-89)
[4]  Liu W Q, Chen H, Xia D S. Markov Random Field Based Fast Segmentation. Journal of Image and Graphics, 2001, 6(3): 228-233 (in Chinese) (刘伟强, 陈 鸿, 夏德深. 基于马尔可夫随机场的快速图像分割. 中国图像图形学报, 2001, 6(3): 228-233)
[5]  Rmillard B, Beaudoin C. Statistical Comparison of Images Using Gibbs Random Fields. In: Proc of the Conference on Vision Interface. Trois-Rivires, Canada, 1999, 424-431
[6]  Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Trans on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741
[7]  Figueiredo M, Leito J. Unsupervised Image Restoration and Edge Location Using Compound Gauss Markov Random Fields and the MDL Principle. IEEE Trans on Image Processing, 1997, 6(8): 1089-1102
[8]  Yang W J, Liu H X, Wang Z M, Qin L. The Application of Markov Random Fields Method to Restoration of Gray-Scale Image. Signal Processing, 1998, 14(3): 255-264 (in Chinese) (杨文杰, 刘浩学, 王子美, 秦 炼. Markov随机场方法在灰度图像恢复中的应用. 信号处理, 1998, 14(3): 255-264)
[9]  Saquib S S, Bouman C A, Sauer K. ML Parameter Estimation for Markov Random Fields with Applications to Bayesian Tomography. IEEE Trans on Image Processing, 1998, 7(7): 1029-1044
[10]  Besag J. Statistical Analysis of Non-Lattice Data. The Statistician, 1975, 24(3): 179-195
[11]  Forbes F, Peyrard N. Hidden Markov Random Field Model Selection Criteria Based on Mean Field-Like Approximations. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(9): 1089-1101
[12]  Zhou Z Y, Leahy R M, Qi J Y. Approximate Maximum Likelihood Hyperparameter Estimation for Gibbs Priors. IEEE Trans on Image Processing, 1997, 6(6): 844-861
[13]  Descombes X, Morris R, Zerubia J, Berthod M. Estimation of Markov Random Field Prior Parameters Using Markov Chain Monte Carlo Maximum Likelihood. IEEE Trans on Image Processing, 1999, 8(7): 954-963
[14]  Moller J. Aspects of Spatial Statistics Stochastic Geometry and Markov Chain Monte Carlo Methods. Ph.D Dissertation. Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark, 1998
[15]  El-Baz A, Farag A A. Parameter Estimation in Gibbs-Markov Image Models. In: Proc of the 6th International Conference on Information Fusion. Queensland, Australia, 2003, 934-942
[16]  Bouman C, Sauer K. A Generalized Gaussian Image Model for Edge-Preserving MAP Estimation. IEEE Trans on Image Processing, 1993, 2(3): 296-310
[17]  Mao S S, Wang J L, Pu X L. Advanced Mathematical Statistics. Beijing, China: Higher Education Press, 1998 (in Chinese) (茆诗松, 王静龙, 濮晓龙. 高等数理统计. 北京: 高等教育出版社, 1998)
[18]  Yun Q X. Evolution Algorithm. Beijing, China: Metallurgical Industry Press, 2000 (in Chinese) (云庆夏. 进化算法. 北京: 冶金工业出版社, 2000)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133