全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用模式增长方法挖掘嵌入式频繁子树*

, PP. 208-214

Keywords: 数据挖掘,频繁模式,模式增长,频繁子树

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出用模式增长方法在带标记有序树构成的森林中挖掘嵌入式频繁子树.算法利用最右路径扩展方法构造完整的模式增长空间,然后根据待增长模式的拓扑结构确定其增长点并构造相应投影库,从而将挖掘频繁子树问题转化为在各投影库中寻找频繁节点问题.这大大降低算法的复杂性.实验表明其具有较高的时空效率.

References

[1]  Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases. In: Proc of the ACM SIGMOD International Conference on Management of Data. Washington, USA, 1993, 207-216
[2]  Agrawal R, Srikan R. Fast Algorithms for Mining Association Rules. In: Proc of the 20th International Conference on Very Large Data Bases. Santiago, Chile, 1994, 487-499
[3]  Wang K, Liu H Q. Schema Discovery for Semistructured Data. In: Proc of the 3rd International Conference on Knowledge Discovery and Data Mining. Newport Beach, USA, 1997, 271-274
[4]  Chi Y, Yang Y, Muntz R R. Index and Mining Free Trees. In: Proc of the 3rd International Conference on Data Mining. Melbourne, USA, 2003, 509-512
[5]  Han J W, Pei J, Yin Y W. Mining Frequent Patterns without Candidate Generation. In: Proc of the ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000, 1-2
[6]  Zaki M J. Efficiently Mining Frequent Trees in a Forest. In: Proc of the International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002, 71-80
[7]  Asia T, et al. Efficient Substructure Discovery from Large Semi-Structured Data. In: Proc of the 2nd SIMA International Conference on Data Mining. Arlington, USA, 2002, 158-174
[8]  Pei J, et al. H-Mine: Hyper-Structure Mining of Frequent Patterns in Large Databases. In: Proc of the 1st International Conference on Data Mining. San Jose, USA, 2001, 441-448
[9]  Pei J, et al. PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In: Proc of the International Conference on Data Engineering. Heidelberg, Germany, 2001, 215-224
[10]  Ma H B, Zhang J, Ying J F, Yun F H. Mining Frequent Patterns Based on IS+-Tree. In: Proc of the International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, 497-503
[11]  Dehaspe L, et al. Finding Frequent Substructures in Chemical Compounds. In: Proc of the 4th International Conference on Knowledge Discovery and Data Mining. New York, USA, 1998, 30-36
[12]  Miyahara T, et al. Discovery of Frequent Tree Structured Patterns in Semistructured Web Documents. In: Proc of the 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Hong Kong, China, 2001, 47-52
[13]  Yan X, Han J. gSpan: Graph-Based Substructure Pattern Mining. In: Proc of the 2nd International Conference on Data Mining. Maebashi City, Japan, 2002, 721-724
[14]  Zaki M J, Aggarwal C C. XRules: An Effective Structural Classifier for XML Data. In: Proc of the 9th International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003, 316-325
[15]  Yan X F, Yu S P, Han J W. Graph Indexing: A Frequent Structure-Based Approach. In: Proc of the ACM SIGMOD International Conference on Management of Data. Paris, Fance, 2004, 335-346

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133