全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于多示例学习的图像检索方法*

, PP. 179-185

Keywords: 机器学习,多示例学习,基于内容的图像检索(CBIR)

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于多示例学习能够有效处理图像的歧义性,因此被应用于基于内容的图像检索(CBIR).本文提出一种基于多示例学习的CBIR方法.该方法将图像作为多示例包,使用基于自组织特征映射网络聚类的方法分割图像,并将由颜色和纹理特征描述的图像区域作为包中示例.根据用户选择的实例图像生成正包和反包,使用多示例学习算法进行学习,实现图像检索和相关反馈.实验结果表明这种方法与已有方法检索效果相当,但检索效率更高.

References

[1]  Auer P, Long P M, Srinivasan A. Approximating Hyper-Rectangles: Learning and Pseudo-Random Sets. Journal of Computer and System Science, 1998, 57(3): 376-388
[2]  Wang J, Zucker J-D. Solving the Multiple-Instance Problem: a Lazy Learning Approach. In: Langley P, ed. Proc of the 17th International Conference on Machine Learning. Stanford, USA, 2000, 1119-1125
[3]  Ruffo G. Learning Single and Multiple Instance Decision Trees for Computer Security Applications. Ph.D Dissertation. Department of Computer Science, University of Turin, Torino, Italy, 2000
[4]  Zucker J-D, Chevaleyre Y. Solving Multiple-Instance and Multiple-Part Learning Problems with Decision Trees and Decision Rules. In: Stroulia E, Matwin S, eds. Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag, 2001, 204-214
[5]  Zhou Z H, Zhang M L. Neural Networks for Multi-Instance Learning. Technical Report, Artificial Intelligence Laboratory, Department of Computer Science & Technology, Nanjing University, Nanjing, China, 2002
[6]  Zhou Z H, Zhang M L. Ensembles of Multi-Instance Learners. In: Lavrac N, Gamberger D, Blockeel H, Todorovski L, eds. Proc of the 14th European Conference on Machine Learning. Cartat-Dubrovnik, Croatia, 2003, 492-501
[7]  Maron O, Lozano-Pérez T. A Framework for Multiple-Instance Learning. In: Jordan M I, Kearns M J, Solla S A, eds. Advances in Neural Information Processing Systems 10. Cambridge, USA: MIT Press, 1998, 570-576
[8]  Amar R A, Dooly D R, Goldman S A, Zhang Q. Multiple-Instance Learning of Real-Valued Data. In: Brodley C E, Danyluk A P, eds. Proc of the 18th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann, 2001, 3-10
[9]  Maron O, Ratan A L. Multiple-Instance Learning for Natural Scene Classification. In: Koller D, Fratkina R, eds. Proc of the 15th International Conference on Machine Learning. San Francisco, USA: Morgan Kaufmann, 1998, 341-349
[10]  Yang C, Lozano-Pérez T. Image Database Retrieval with Multiple-Instance Learning Techniques. In: Proc of the 16th International Conference on Data Engineering. San Diego, USA, 2000, 233-243
[11]  Kohonen T. Self-Organizing Maps. 2nd Edition. Berlin, Germany: Springer-Verlag, 1997
[12]  Jiang Y, Chen K J, Zhou Z H. SOM Based Image Segmentation. In: Proc of the 9th Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. Chongqing, China, 2003, 640-643
[13]  Manjunath B S, Ma W Y. Texture Features for Browsing and Retrieval of Image Data. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842
[14]  Dietterich T G, Lathrop R H, Lozano-Pérez T. Solving the Multiple Instance Problem with Axis-Parallel Rectangles. Artificial Intelligence, 1997, 89(1-2): 31-71
[15]  Maron O. Learning from Ambiguity. Ph.D Dissertation. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, USA, 1998
[16]  Smeulders A W M, Worring M, Santini S, Gupta A, Jain R. Content-Based Image Retrieval at the End of the Early Years. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349-1380
[17]  Long P M, Tan L. PAC Learning Axis-Aligned Rectangles with Respect to Product Distribution from Multiple-Instance Examples. Machine Learning, 1998, 30(1): 7-21

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133