全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于粗糙集的离散化算法*

, PP. 412-416

Keywords: 离散化,粗糙集,一致性,约简

Full-Text   Cite this paper   Add to My Lib

Abstract:

粗糙集理论以其独特的数据约简能力在不确定信息处理的相关领域得到广泛关注和研究,而连续属性的离散化是粗糙集方法及其它归纳学习系统中的重要环节.将离散化视作一种信息概括、抽象和约简,利用粗糙集理论提出一种全局的离散化算法.算法通过定义一致性度量,实现全局离散,弥补了局部离散化MDLP方法引入不一致的缺陷.然后在保持一致性前提下,进一步对离散中分割点的冗余进行约简.实验采用ID3和粗糙集分类工具ROSETTA在多个大数据集上对提出的离散方法进行分类验证,实验结果表明该算法的有效性和优越性.

References

[1]  Su C T, Hsu J H. An Extended Chi2 Algorithm for Discretization of Real Value Attributes. IEEE Trans on Knowledge and Data Engineering, 2005, 17(3): 437 - 441
[2]  Li M X, Wu C D, Han Z H, Yue Y. A Hierarchical Clustering Method for Attribute Discretization in Rough Set Theory. In: Proc of the International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, Ⅵ: 3650-3654
[3]  Zhao J, Wang G Y, Wu Z F, et al. Method of Data Discretization Based on Rough Set Theory. Mini-Micro Systems, 2004, 25(1): 60-64 (in Chinese) (赵 军,王国胤,吴中福,等.基于粗集理论的数据离散化方法.小型微型计算机系统, 2004, 25(1): 60-64)
[4]  He Y Q, Hu S S. A New Method for Continuous Value Attribute Discretization in Rough Set Theory. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(2): 212-215 (in Chinese) (何亚群, 胡寿松. 粗糙集中连续属性离散化的一种新方法. 南京航空航天大学学报, 2003, 35(2): 212-215)
[5]  Fayyad U M, Irani K B. Multi-Interval Discretization of Continuous Valued Attributes for Classification Learning. In: Proc of the 13th International Joint Conference on Artificial Intelligence. Chambéry, France, 1993, 1022-1027
[6]  Chmielewski M R, Grzymala-Busse J W. Global Discretization of Continuous Attributes as Preprocessing for Machine Learning. International Journal of Approximate Reasoning, 1996, 15(4): 319-331
[7]  Pawlak Z, et al. Rough Sets. Communications of the ACM, 1995, 38(11): 89-95

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133