全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

量化规则格及其渐进式构造*

, PP. 375-381

Keywords: 频繁封闭项集,同交易项集,最小无冗余规则,量化规则格

Full-Text   Cite this paper   Add to My Lib

Abstract:

提取最小无冗余规则的关键是获取频繁封闭项集所对应的同交易项集集合中的最小项集.为了便于利用概念格提取这类规则,本文提出量化规则格,重点讨论在渐进构造格的过程中生成节点所对应的同交易项集中的最小项集的问题,并给出相应的算法.由于量化规则格和格节点对应的具有相同交易集的最小项集是渐进生成的,因此,它适合于从动态数据库中提取最小无冗余的关联规则并且可方便地实现规则的渐增更新.

References

[1]  Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases. In: Proc of the ACM SIGMOD Conference on Management of Data. Washington, USA, 1993, 207-216
[2]  Han J W, Kamber M. Data Mining: Concepts and Techniques. Orlando, USA: Morgan Kaufmann Publisher, 2000
[3]  Li Y, Liu Z T, et al. Extracting Minimal Non-Redundant Implication Rules by Using Quantized Closed Itemset Lattice. In: Proc of the 16th International Conference on Software Engineering and Knowledge Engineering. Banff, Canada, 2004, 402-405
[4]  Li Y, Liu Z T, et al. Extracting Minimal Non-Redundant Approximate Rules Based on Quantitative Closed Itemset Lattice. Journal of Fudan University (Natural Science), 2004, 43(5): 801-804
[5]  Bastide Y, Pasquier N, et al. Mining Minimal Non-Redundant Association Rules Using Frequent Closed Itemsets. In: Proc of the 1st International Conference on Computational Logic. London, UK, 2000, 972-986
[6]  Ganter B, Wille R. Formal Concept Analysis: Mathematical Foundations. Berlin, Germany: Springer-Verlag, 1999
[7]  Waiyamai K, Lakhal L. Knowledge Discovery from Very Large Databases Using Frequent Concept Lattices. In: Proc of the 11th European Conference on Machine Learning. Barcelona, Spain, 2000, 437-445
[8]  Xie Z P, Liu Z T. Concept Lattice and Association Rule Discovery. Journal of Computer Research and Development, 2000, 37(12): 1415-1421 (in Chinese) (谢志鹏,刘宗田.概念格与关联规则发现.计算机研究与发展, 2000, 37(12): 1415-1421)
[9]  Pasquier N, Bastide Y, et al. Efficient Mining of Association Rules Using Closed Itemset Lattices. Information Systems, 1999, 24(1): 25-46
[10]  Zaki M J, Hsiao C J. Charm: An Efficient Algorithm for Closed Association Rule Mining. Technical Report, 99-10, Rensselaer Polytechnic Institute, 1999
[11]  Valtchev P, Missaoui R, Godin R, Meridji M. Generating Frequent Itemsets Incrementally: Two Novel Approaches Based on Galois Lattice Theory. Journal of Experimental and Theoretical Artificial Intelligence, 2002, 14(2-3): 115-142
[12]  Li Y, Liu Z T, et al. Extracting Minimal Non-Redundant Associate Rules from QCIL. In: Proc of the 4th International Conference on Computer and Information Technology. Wuhan, China, 2004, 986-991
[13]  Gao F, Xie J Y. Algorithm for Generating Non-Redundant Association Rules. Journal of Shanghai Jiaotong University, 2001, 35(2): 256-258 (in Chinese) (高 峰,谢剑英. 一种无冗余的关联规则发现算法.上海交通大学学报, 2001, 35(2): 256-258)
[14]  Godin R, Missaoui R, Alaoui H. Incremental Concept Formation Algorithms Based on Galois (Concept) Lattices. Computational Intelligence, 1995, 11(2): 246-267

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133