全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

进化算法与动态贝叶斯网络混合优化研究*

, PP. 281-288

Keywords: 自主控制,贝叶斯优化,动态贝叶斯网络,转移网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种复杂环境下自主控制的动态优化新方法.首先,利用动态贝叶斯网络作为进化算法t代到t+1代的转移网络,将贝叶斯优化及概率模型进化算法的静态优化机制推广到动态系统.通过感知环境变化,转移网络可以适时改变优化的基本条件和重新确立优化方向,指导自主智能体在无人干预下顺利完成一系列复杂任务.仿真结果表明基本思路正确.其次,为提高优化速度,满足实时性要求,提出“约束函数”及“置换”的概念,通过减少进化过程中不必要的网络节点及继承上一代部分优良解的方式,使得进化优化不必每次都重头开始,提高算法效率.

References

[1]  Harik G R, Lobo F G, Goldberg D E. The Compact Genetic Algorithm. IEEE Trans on Evolutionary Computation, 1999, 3(4): 287-297
[2]  Pavlovi’c V, Frey B J, Huang T S. Time-Series Classification Using Mix-State Dynamic Bayesian Networks. IEEE Trans on Robotics and Automation, 1999,16(3): 609-615
[3]  Mühlenbein H, Mahnig T. Evolutionary Synthesis of Bayesian Networks for Optimization. In: Patel M, Honavar V, Balakrishnan K, eds. Advance in the Evolutionary Synthesis of Intelligent Agents. Cambridge, USA: MIT Press, 2001, 429-455
[4]  de Bonet J S, Isbell C L, Viola P. MIMIC: Finding Optima by Estimating Probability Densities. In: Mozer M C, Jordan M I, Petsche T, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2000, 424-430
[5]  Rudolph G. Convergence Analysis of Canonical Genetic Algorithms. IEEE Trans on Neural Networks, 1994, 5(1): 96-101
[6]  Gao X G, Yang Y L. Initial Path Planning Based on Different Threats for Unmanned Combat Air Vehicles. Acta Aeronautica ET Astronautica Sinica, 2003, 24(5): 435-438 (in Chinese) (高晓光,杨有龙.基于不同威胁体的无人作战飞机初始路径规划. 航空学报, 2003, 24(5): 435-438)
[7]  Pavlovi’c V, Rehg J M, et al. A Dynamic Bayesian Network Approach to Figure Tracking Using Learned Dynamic Models. In: Proc of the International Conference on Computer Vision. Corfu, Greece, 1999, 94-101
[8]  Neal R M, Hinton G E. A New View of the EM Algorithm that Justifies Incremental and Other Variants. In: Jordan M I, ed. Learning in Graphical Models. Dordrecht, Netherlands: Kluwer Academic Publishers, 1998, 355-368
[9]  Hanson M L, Harperk K A. An Intelligent Agent for Supervisory Control of Teams of Unmanned Combat Air Vehicles. In: Proc of the AUVSI 2000 Unmanned Systems Symposium and Exhibition. Orlando, USA, 2000, 456-458
[10]  Rauch H E. Solutions to the Linear Smoothing Problem. IEEE Trans on Automatic Control, 1963, 8(3): 371-372
[11]  Jordan M I, Ghahramani Z,et al. An Introduction to Variational Methods for Graphical Methods. Machine Learning, 1999, 37(2): 183-233
[12]  Pachter M, Chandler P R. Challenges of Autonomous Control. IEEE Control Systems Society Magazine, 1998,18(4): 92-97
[13]  Yang H. Investigation of Advanced Unmanned Aerial Vehicle Flight Control Techniques. Flight Dynamics, 2002, 20(1): 1-4 (in Chinese) (杨 晖.先进无人机飞行控制技术研究.飞行力学, 2002, 20(1): 1-4)
[14]  Breitner M H, et al. Robust Optimal On-Board Reentry Guidance of a Space Shuttle: Dynamic Game Approach and Guidance Synthesis via Neural Networks. Joural of Optimization Theory and Applications, 2000,107(3): 481-503
[15]  Fu X W, Gao X G. Study on a Kind of Path Planning Algorithm for UAV. Journal of System Simulation, 2004, 16(1): 20-21,34 (in Chinese) (符小卫,高晓光.一种无人机路径规划算法研究.系统仿真学报, 2004, 16(1): 20-21,34)
[16]  Pelikan M, Goldberg D E, Cantu-Paz E. Linkage Problem, Distribution Estimation and Bayesian Networks. Evolutionary Computation, 2000, 8(3): 311- 340
[17]  Pelikan M, Goldberg D E, Tsutsui S. Combining the Strengths of the Bayesian Optimization Algorithm and Adaptive Evolution Strategies. In: Proc of the Genetic and Evolutionary Computation Conference. San Francisco, USA: Morgan Kaufmann, 2002, 512-519

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133