全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于置信度分析的人群密度等级分类模型

, PP. 30-39

Keywords: 置信度分析,支持向量机(SVM),统计学习,人群密度

Full-Text   Cite this paper   Add to My Lib

Abstract:

人群密度等级估计是智能人群监控的核心技术之一。其主要应用是统计监控图像或视频中指定监控区域内的人群密度量化等级。文中提出一种基于置信度分析的人群密度等级分类模型。首先设计基于二叉树分类思想的纠错输出编码,优化组合多个二分类器。然后提取置信样本,训练SVM二分类器。最后利用信道传输模型进行解码,依据后验概率最大法则得到样本所属的人群密度等级。该模型在样本集和特征相同的前提下分类正确率和泛化性能均优于传统分类模型,为以人群密度估计为代表的多类分类问题求解提供一种思路。

References

[1]  Velastin S A, Yin J H, Davies A C, et al. Analysis of Crowd Movements and Densities in Built-up Environments Using Image Processing // Proc of the IEE Colloquium on Image Processing for Transport Applications. London, UK, 1993: 1-6
[2]  Kong Dan, Gray D, Tao Hai. A Viewpoint Invariant Approach for Crowd Counting // Proc of the 18th IEEE International Conference on Pattern Recognition. Hongkong, China, 2006, Ⅲ: 1187-1190
[3]  Marana A N, da Costa L, Lotufo R A, et al. On the Efficacy of Texture Analysis for Crowd Monitoring // Proc of the International Symposium on Computer Graphics, Image Processing, and Vision. Impa, Brazil, 1998: 354-361
[4]  Rahmalan H, Nixon M S, Carter J N. On Crowd Density Estimation for Surveillance // Proc of the IEEE International Conference on Crime Detection and Prevention. London, UK, 2006: 540-545
[5]  Ma Wenhua, Huang Lei, Liu Changping. Advanced Local Binary Pattern Descriptors for Crowd Estimation // Proc of the IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application. Wuhan, China, 2008, Ⅱ: 958-962
[6]  Allwein E L, Shapire R E, Singer Y. Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers. Journal of Machine Learning Research, 2001, 1: 113-141
[7]  Fei B, Liu J. Binary Tree of SVM: A New Fast Multiclass Training and Classification Algorithm. IEEE Trans on Neural Networks, 2006, 17(3): 696-704
[8]  Pujol O, Radeva P. Discriminant ECOC: A Heuristic Method for Application Dependent Design of Error Correcting Output Codes. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 28(6): 1007-1012
[9]  Hsu C W, Lin C J. A Comparison of Methods for Multi-Class Support Vector Machines. IEEE Trans on Neural Networks, 2002, 13(2): 415-425
[10]  Ma R, Li L, Huang W, et al. On Pixel Count Based Crowd Density Estimation for Visual Surveillance // Proc of the IEEE Conference on Cybernetics and Intelligent Systems. Singapore, Singapore, 2004: 170-173
[11]  Marana A N, da Costa L, Lotufo R A, et al. Estimating Crowd Density with Minkowski Fractal Dimension // Proc of the International Conference on Acoustics, Speech and Signal Processing. Phoenix, USA, 1999, Ⅵ: 3521-3524
[12]  Wu Xinyu, Liang Guoyuan, Lee K K, et al. Crowd Density Estimation Using Texture Analysis and Learning // Proc of the IEEE International Conference on Robotics and Biomimetics. Kunming, China, 2006: 214-219
[13]  Xu Yong, Lu Guangming. Analysis on Fisher Discriminant Criterion and Linear Separability of Feature Space // Proc of the IEEE International Conference on Computational Intelligence and Security. Hongkong, China, 2006: 1671-1676
[14]  Tao Qin, Wu Gaowei, Wang Feiyue, et al. Posterior Probability Support Vector Machines for Unbalanced Data. IEEE Trans on Neural Networks, 2005, 16(6): 1561-1573
[15]  Takenouchi T, Ishii S. Multiclass Classification as a Decoding Problem // Proc of the IEEE Symposium on Foundations of Computational Intelligence. Honolulu, USA, 2007: 470-475

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133