全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多智能体协同进化的粒子滤波目标跟踪算法

, PP. 57-63

Keywords: 粒子滤波器,重采样,智能体,协同进化,目标跟踪

Full-Text   Cite this paper   Add to My Lib

Abstract:

在对视频图像中的目标进行跟踪时,由于现有的粒子滤波器存在粒子退化和多样性丧失等问题,导致跟踪精度降低。文中提出一种基于多智能体协同进化的粒子滤波目标跟踪算法。该算法将多智能体协同进化机制引入到粒子滤波的重采样过程,通过对粒子个体和局部生存环境的重新定义,使粒子成为具有局部感知、竞争协作和自学习能力的智能个体。通过粒子间的竞争、交叉、变异以及自学习等进化行为来实现重采样过程,在保证粒子有效性的同时还增加粒子的多样性。实验结果表明该算法可对复杂视频环境下的运动目标进行准确、鲁棒地跟踪。

References

[1]  Comaniciu D, Ramesh V. Mean Shift and Optimal Prediction for Efficient Object Tracking // Proc of the International Conference on Information Processing. Vancouver, Canada, 2000: 70-73
[2]  Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift // Proc of the International Conference on Computer Vision and Pattern Recognition. Hilton Head, USA, 2000, Ⅱ: 142-149
[3]  Weng S K, Kuo C M, Tu S K. Video Object Tracking Using Adaptive Kalman Filter. Journal of Visual Communication and Image Representation, 2006, 17(6): 1190-1208
[4]  Jang D S, Jang S W, Choi H I. 2D Human Body Tracking with Structural Kalman Filter. Pattern Recognition, 2002, 35(10): 2041-2049
[5]  Gustafsson F, Gunnarsson F, Bergman N. Particle Filters for Positioning, Navigation and Tracking. IEEE Trans on Signal Processing, 2002, 50(2): 425-437
[6]  Chang C, Ansari R. Kernel Particle Filter for Visual Tracking. IEEE Signal Processing Letters, 2005, 12(3): 242-245
[7]  Kang Jian, Si Xicai, Rui Guosheng. Particle Filtering Techniques Based on Bayesian Theorem. Modern Radar, 2006, 26(1): 34-36 (in Chinese) (康 健,司锡才,芮国胜.基于贝叶斯原理的粒子滤波技术概述.现代雷达, 2006, 26(1): 34-36)
[8]  Hu Shiqiang, Jing Zhongliang. Overview of Particle Filter Algorithm. Control and Decision, 2005, 20(4): 361-365 (in Chinese) (胡士强,敬忠良.粒子滤波算法综述.控制与决策, 2005, 20(4): 361-365)
[9]  Kwok N M, Fang Gu, Zhou Weizhen. Evolutionary Particle Filter: Re-Sampling from the Genetic Algorithm Perspective // Proc of the IEEE International Conference on Intelligent Robots and Systems. Singapore, Singapore, 2005: 2935-2940
[10]  Zhang Yan, Shen Zhenkang, Qiao Shidong. An Improved Particle Filter. Signal Processing, 2008, 24(1): 256-259 (in Chinese) (张 焱,沈振康,乔士东.一种改进型的粒子滤波器.信号处理, 2008, 24(1): 256-259)
[11]  Jiao Licheng, Liu Jing, Zhong Weicai. Co-Evolution Computation and Multi-Agent System. Beijing, China: Science Press, 2006 (in Chinese) (焦李成,刘 静,钟伟才.协同进化计算与多智能体系统.北京:科学出版社, 2006)
[12]  Doucet A, Godsill S J, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing, 2000, 10(3): 197-208
[13]  Arulampalm M S, Maskell S, Gordon N. A Tutorial on Particle Filters for On-Line Non-Linear/Non-Gaussian Bayesian Tracking. IEEE Trans on Signal Processing, 2002, 50(2): 174-188
[14]  Comaniciu D, Ramesh V, Meer P. Kernel-Based Object Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577
[15]  Pitt M K, Shephard N. Filtering via Simulation: Auxiliary Particle Filters. Journal of American Statistical Association. 1999, 94(446): 590-591

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133