全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于相似度分布的开集人脸识别方法

, PP. 147-152

Keywords: 人脸识别,开集,线性判别分析(LDA)

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用相似度多个维度的信息进行开集判别,以提高开集人脸识别的准确率。该方法首先通过大量带标识的测试样本获得已知类样本和非已知类样本相似度向量的分布,然后引入线性判别分析学习两个类中相似度向量的分布特征,在开集判别中通过相似度向量的特征匹配来判断样本是否为已知类。利用相似度分布中的分类信息,训练出的特征具有更强的分类能力。不同人脸库的实验表明,相对于传统方法,文中方法能提高开集识别的准确率。

References

[1]  Jain A K, Ross A, Prabhakar S. An Introduction to Biometric Recognition. IEEE Trans on Circuits and Systems for Video Technology, 2004, 14(1): 4-20
[2]  Shan Shiguang. Study on Some Key Issues in Face Recognition. Ph.D Dissertation. Beijing, China: Chinese Academy of Sciences. Institute of Computing Technology, 2004 (in Chinese) (山世光.人脸识别中若干关键问题的研究.博士学位论文. 北京:中国科学院计算技术研究所, 2004)
[3]  Phillips P J, Grother P, Micheals R J, et al. Face Recognition Vendor Test 2002: Evaluation Report. Technical Report, NISTIR 6965, Gaithersburg, USA: National Institute of Standards and Technology, 2003
[4]  Shan Shiguang, Yang Peng, Chen Xilin, et al. AdaBoost Gabor Fisher Classifier for Face Recognition // Proc of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures. Beijing, China, 2005: 278-291
[5]  Li Fayin, Wechsler H. Open Set Face Recognition Using Transduction. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1686-1697
[6]  Duda R O, Hart P E, Stork D G. Pattern Classification. New York, USA: John Wiley Sons, 2001: 146-160
[7]  Jain A K, Nandakumar K, Ross A A. Score Normalization in Multimodal Biometric Systems. Pattern Recognition, 2005, 38(12): 2270-2285
[8]  Yang Fei, Shan Shiguang, Chen Xilin, et al. Using Score Normalization to Solve the Score Variation Problem in Face Authentication. New York, USA: Springer, 2005: 31-38
[9]  Gammerman A, Vovk V, Vapnik V. Learning by Transduction // Proc of the 14th Conference on Uncertainty in Artificial Intelligence. Madison, USA, 1998: 148-155
[10]  Saunders C, Gammerman A. Vovk V. Tranjsduction with Confidence and Credibility // Proc of the 16th International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 1999: 722-726
[11]  Shao Jie, Huang Zi, Shen Hengtao, et al. Distribution-Based Similarity Measures for Multi-Dimensional Point Set Retrieval Applications // Proc of the 16th ACM International Conference on Multimedia. Vancouver, Canada, 2008: 429-438
[12]  Yan Shuicheng, Xu Dong, Tang Xiaoou. Face Verification with Balanced Thresholds. IEEE Trans on Image Processing, 2007, 16(1): 262-268
[13]  Kalocsai P, Zhao Wenyi, Biederman I. Face Similarity Space as Perceived by Humans and Artificial Systems // Proc of the 3rd International Conference on Face and Gesture Recognition. Nara, Japan, 1998: 177-180
[14]  Chopra S, Hadsel R, LeCun Y. Learning a Similarity Metric Discriminatively with Application to Face Verification // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅰ: 539-546
[15]  Phillips P J, Moon H, Rizvi S A, et al. The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104
[16]  Gao Wen, Cao Bo, Shan Shiguang, et al. The CAS-PEAL Large-Scale Chinese Face Database and Evaluation Protocols. Technical Report, JDL_TR_04_FR_001, Beijing, China: Chinese Academy of Sciences. Joint Research Development Laboratory for Face Recognition, 2004
[17]  Li S Z, Chu Rufeng, Liao Shengcai, et al. Illumination Invariant Face Recognition Using Near-Infrared Images. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(4): 627-639

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133