Steil1 J J, Wersing H. Recent Trends in Online Learning for Cognitive Robot // Proc of the European Symposium on Artificial Neural Networks. Bruges, Belgium, 2006: 77-87
[2]
Manresa C, Varona J, Mas R, et al. Real-Time Hand Tracking and Gesture Recognition for Human-Computer Interaction. Electronic Letters on Computer Vision and Image Analysis, 2000, 5(3): 96-104
[3]
Je H, Kim J, Kim D. Hand Gesture Recognition to Understand Musical Conducting Action // Proc of the 16th IEEE International Conference on Robot Human Interactive Communication. Jeju, Korea, 2007: 163-168
[4]
Fang Yikai, Wang Kongqiao, Cheng Jian, et al. A Real-Time Hand Gesture Recognition Method // Proc of the IEEE International Conference on Multimedia and Expo. Beijing, China, 2007: 995-998
[5]
Yoon H S, Soh J, Bae Y J, et al. Hand Gesture Recognition Using Combined Features of Location, Angle and Velocity. Pattern Recognition, 2001, 34(7): 1491-1501
[6]
Binh N D, Shuchi E, Ejima T. Real-Time Hand Tracking and Gesture Recognition System // Proc of International Conference on Graphics, Vision and Image Processing. Cairo, Egypt, 2005: 362-368
[7]
Kirishima T, Sato K, Chihara K. Real-Time Gesture Recognition by Learning and Selective Control of Visual Interest Points. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 351-364
[8]
Ren Haibing, Zhu Yuanxin, Xu Guangyou, et al. Hand Gesture Segmentation and Recognition with Complex Backgrounds. Acta Automatica Sinica, 2002, 28(2): 256-261 (in Chinese) (任海兵,祝远新,徐光祐,等.复杂背景下的手势分割与识别.自动化学报, 2002, 28(2): 256-261)
[9]
Yang Quan, Wang Min. Hand Gesture Recognition Algorithm Based on Euclidean Distance. Microcomputer Information, 2007, 23(25): 265-266 (in Chinese) (杨 全,王 民.基于Euclidean 距离的手势识别. 微计算机信息, 2007, 23(25): 265-266)
[10]
Kirstein S, Wersing H, Korner E. A Biologically Motivated Visual Memory Architecture for Online Learning of Objects. Neural Networks, 2008, 21: 65-77
[11]
Luo Jie, Pronobis A,Caputo B, et al. Incremental Learning for Place Recognition in Dynamic Environments // Proc of the IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA, 2007: 721-728
[12]
Ozawa S, Pang Shaoning, Kasabov N. A Modified Incremental Principal Component Analysis for On-Line Learning of Feature Space and Classifier // Proc of the 8th Pacific Rim International Conference on Artificial Intelligence. Auckland, New Zealand, 2004: 231-240
[13]
Jiang Xianhua, Motai Y. Learning by Observation of Robotic Tasks Using On-Line PCA-Based Eigen Behavior // Proc of the IEEE International Symposium on Computational Intelligence in Robotics and Automation. Espoo, Finland, 2005: 391-396
[14]
Artac M, Jogan M, Leonardis A. Incremental PCA for On-Line Visual Learning and Recognition // Proc of the 16th International Conference on Pattern Recognition. Quebec, Canada, 2002, Ⅲ: 781-784
[15]
Skocaj D, Leonardis A. Weighted and Robust Incremental Method for Subspace Learning // Proc of the IEEE International Conference on Computer Vision. Nice, France, 2003: 1494-1501
[16]
Fussenegger M, Roth P M, Bischof H, et al. On-Line, Incremental Learning of a Robust Active Shape Model // Proc of the 28th DAGM Symposium for Pattern Recognition. Berlin, Germany, 2006: 122-130
[17]
Neto H V, Nehmzow U. Incremental PCA: An Alternative Approach for Novelty Detection // Proc of the Towards Autonomous Robotic Systems Incorporating the Autumn BiroNet Symposium. London, UK, 2005: 227-233
[18]
Peng Juanchun , Gu Lizhong , Su Jianbo. The Hand Tracking for Humanoid Robot Using Camshift Algorithm and Kalman Filter. Journal of Shanghai Jiaotong University, 2006, 40(7): 1161-1165 (in Chinese) (彭娟春, 顾立忠, 苏剑波. 基于Camshift 和Kalman 滤波的仿人机器人手势跟踪. 上海交通大学学报, 2006, 40(7): 1161-1165)