全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Widrow-Hoff神经网络的多指标推荐算法

, PP. 233-242

Keywords: Widrow-Hoff神经网络,推荐算法,多指标评分,相似度,用户偏好特征向量

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决传统的协同过滤推荐算法不能综合运用多个指标进行推荐的问题,通过引入多指标评分的概念对标准的协同过滤推荐算法进行扩展,提出一种基于Widrow-Hoff神经网络的多指标推荐算法。利用Widrow-Hoff最小二乘法自适应算法在进行系统辨识时的高精度拟合特性,提出一种基于Widrow-Hoff最小二乘法算法的用户偏好特征向量计算方法。利用用户偏好特征向量和空间距离矩阵度量用户相似度,以定位邻居集并为用户推荐最优项目。实验结果表明,本文算法可提高推荐精度,改进推荐质量。

References

[1]  Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems:A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
[2]  Teng Weiguang, Lee H H. Collaborative Recommendation with Multi-Criteria Ratings. Journal of Computers. 2007, 17(4): 69-78
[3]  Adomavicius G, Kwon Y O. New Recommendation Techniques for Multicriteria Rating Systems. IEEE Intelligent Systems, 2007, 22(3): 48-55
[4]  Lakiotaki K, Tsafarakis S, Matsatsinis N. UTA-Rec: A Recommender System Based on Multiple Criteria Analysis // Proc of the ACM Conference on Recommender Systems. Lausanne, Switzerland, 2008: 219-226
[5]  Huang Zan, Chen H, Zeng D. Applying Associative Retrieval Techniques to Alleviate the Sparsity Problem in Collaborative Filtering. ACM Trans on Information System, 2004, 22(1): 116-142
[6]  Ge Lei, Huo Aiqing. Application Research of Widrow-Hoff Neural Network Learning Rule. Electronic Design Engineering, 2009, 17(6): 15-16,19 (in Chinese) (葛 蕾,霍爱清.Widrow-Hoff神经网络学习规则的应用研究.电子设计工程, 2009, 17(6): 15-16,19)
[7]  Zhang Guangwei, Li Deyi, Li Peng, et al. A Collaborative Filtering Recommendation Algorithm Based on Cloud Model. Journal of Software, 2007, 18(10): 2403-2411 (in Chinese) (张光卫,李德毅,李 鹏,等.基于云模型的协同过滤推荐算法.软件学报, 2007, 18(10): 2403-2411)
[8]  Deng Ailin, Zhu Yangyong, Shi Bole. A Collaborative Filtering Recommendation Algorithm Based on Item Rating Prediction. Journal of Software, 2003, 14(9): 1621-1628 (in Chinese) (邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法.软件学报, 2003, 14(9): 1621-1628)
[9]  Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms // Proc of the 10th International Conference on World Wide Web. Hong Kong, China, 2001: 285-295
[10]  Zhang Binqi. A Collaborative Filtering Recommendation Algorithm Based on Domain Knowledge. Computer Engineering. 2005, 31(21): 79-85 (in Chinese) (张丙奇.基于领域知识的个性化推荐算法研究.计算机工程, 2005, 31(21): 79-85)
[11]  Xu Hailing, Wu Xiao, Li Xiaodong, et al. Comparison Study of Internet Recommendation System. Journal of Software, 2009, 20(2): 350-362 (in Chinese) (许海玲,吴 潇,李晓东,等.互联网推荐系统比较研究.软件学报, 2009, 20(2): 350-362)
[12]  Ma Hongwei, Zhang Guangwei, Li Peng. Survey of Collaborative Filtering Algorithms. Journal of Chinese Computer Systems, 2009, 30(7): 1282-1288 (in Chinese) (马宏伟,张光卫,李 鹏.协同过滤推荐算法综述.小型微型计算机系统, 2009, 30(7): 1282-1288)
[13]  Goldbreg K, Roeder T, Gupta D, et al. Eigentaste a Constant Time Collaborative Filtering Algorithm. Information Retrieval, 2001, 4(2): 133-151
[14]  Silvestri F, Baragla R, Palmerini P, et al. On-Line Generation of Suggestions for Web Users // Proc of the International Conference on Information Technology: Coding Computing. Las Vegas, USA, 2004, Ⅰ: 392-397
[15]  Zhang Lei, Chen Junliang, Meng Xiangwu, et al. BP Neural Networks-Based Collaborative Filtering Recommendation Algorithm. Journal of Beijing University of Posts and Telecommunications, 2009, 32(6): 42-46 (in Chinese) (张 磊,陈俊亮,孟祥武,等.基于BP神经网络的协作过滤推荐算法.北京邮电大学学报, 2009, 32(6): 42-46)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133