全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于核的慢特征分析算法

, PP. 153-159

Keywords: 不变量学习,慢特征分析,核方法,盲源信号分离

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于核的慢特征分析算法。通过引入核技巧,既充分扩充特征空间,又避免直接在高维空间中运算的困难。由于充分利用数据所隐含的非线性信息,所得到的解是稳定的。同时基于对慢特征分析算法目标函数的分析,给出一个对算法结果的评价准则,并用以指导核参数的选择。实验结果验证算法的有效性。

References

[1]  Wiskott L, Sejnowski T. Slow Feature Analysis: Unsupervised Learning of Invariances. Neural Computation, 2002, 14(4): 715-770
[2]  Berkes P, Wiskott L. Slow Feature Analysis Yields a Rich Repertoire of Complex Cell Properties. Journal of Vision, 2005, 5(6): 579-602
[3]  Franzius M, Sprekeler H, Wiskott L. Slowness and Sparseness Lead to Place, Head-Direction and Spatial-View Cells. PLoS Computational Biology, 2007, 3(8): 1605-1622
[4]  Blaschke T, Zito T, Wiskott L. Independent Slow Feature Analysis and Nonlinear Blind Source Separation. Neural Computation, 2007, 19(4): 994-1021
[5]  Franzius M, Wilbert N, Wiskott L. Unsupervised Learning of Invariant 3D-Object Representations with Slow Feature Analysis // Proc of the 3rd Bernstein Symposium for Computational Neuroscience. Gttingen, Germany, 2007: 105-112
[6]  Franzius M, Wilbert N, Wiskott L. Invariant Object Recognition with Slow Feature Analysis // Proc of the 18th International Conference on Artificial Neural Networks. Prague, Czech Republic, 2008: 961-970
[7]  Courant R, Hilbert D. Methods of Mathematical Physics. New York, USA: Wiley-Interscience, 1989
[8]  Vapnik V N. The Nature of Statistical Learning Theory. New York, USA: Springer-Verlag, 1995
[9]  Schlkopf B, Smola A. Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation, 1998, 10(5): 1299-1319
[10]  Schlkopf B, Mika S, Burges C J C, et al. Input Space vs. Feature Space in Kernel-Based Methods. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017
[11]  Wiskott L. Slow Feature Analysis: A Theoretical Analysis of Optimal Free Responses. Neural Computation, 2003, 15(9): 2147-2177
[12]  Sprekeler H, Wiskott L. Understanding Slow Feature Analysis: A Mathematical Framework [EB/OL]. [2008-10-10]. http://cogprints.org/6223/2/Sprekeler wiskotl08.pdf
[13]  Harmeling S, Ziehe A, Kawanabe M, et al. Kernel-Based Nonlinear Blind Source Separation. Neural Computation, 2003, 15(5): 1089-1124
[14]  Duda R O, Hart P E, Stork D G. Pattern Classification. 2nd Edition. New York, USA: Wiley-Interscience, 2001
[15]  Bray A, Martinez D. Kernel-Based Extraction of Slow Features: Complex Cells Learn Disparity and Translation Invariance from Natural Images // Becker S, Thrun S, Obermayer K, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2002: 269-276

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133