全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于MapReduce的频繁闭项集挖掘算法

, PP. 220-224

Keywords: 云计算,并行算法,数据挖掘,频繁闭项集,MapReduce

Full-Text   Cite this paper   Add to My Lib

Abstract:

频繁闭项集的挖掘是发现数据项之间关联规则的一种有效方式。当前以MapReduce模式为基础的云计算平台为解决海量数据中的关联规则挖掘问题提供新的解决思路。文中提出并实现一种基于Hadoop云计算平台的频繁闭项集的并行挖掘算法。该算法主要包括并行计数、构造全局频繁项表、并行挖掘局部频繁闭项集和并行筛选全局频繁闭项集四个步骤。在多个数据集上的实验表明,该方法能较大提高数据挖掘的效率,具有较好的加速比。

References

[1]  Aouad L M,Le-Khac N A,Kechadi T M.Performance Study of Distributed Apriori-Like Frequent Itemsets Mining.Knowledge and Information Systems,2010,23(1): 55-72
[2]  Yu Kunming,Zhou Jiayi,Hong T P,et al.A Load-Balanced Distributed Parallel Mining Algorithm.Expert Systems with Applications,2010,37(3): 2459-2464
[3]  Shankar S,Purusothaman T.Utility Sentient Frequent Itemset Mining and Association Rule Mining: A Literature Survey and Comparative Study.International Journal of Soft Computing Applications,2009,4: 81-95
[4]  Tao Limin,Huang Linpeng.Cherry: An Algorithm for Mining Frequent Closed Itemsets without Subset Checking.Journal of Software,2008,19(2): 379-388 (in Chinese)(陶利民,黄林鹏.Cherry:一种无须子集检查的闭合频繁集挖掘算法.软件学报,2008,19(2): 379-388)
[5]  Han Jiawei,Kamber M.Data Mining: Concepts and Techniques.London,UK: Morgan Kaufmann,2006
[6]  Pei Jian,Han Jiawei,Mao Runying.CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets // Proc of the ACM SIGMOD International Workshop on Data Mining and Knowledge Discovery.Dallas,USA,2000: 21-30
[7]  Wang Jianyong,Han Jiawei,Pei Jian.CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets // Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Washington,USA,2003: 236-245
[8]  Liu Guimei,Lu Hongjun,Yu J X,et al.AFOPT: An Efficient Implementation of Pattern Growth Approach [EB/OL]. [2003-12-19]. http://ftp.informatik.rwth-aachen.de/Publications/ CEURWS/Vol-90/liu.pdf
[9]  Liu Guimei,Lu Hongjun,Xu Yabo,et al.Ascending Frequency Ordered Prefixtree: Efficient Mining of Frequent Patterns // Proc of the 8th International Conference on Database Systems for Advanced Applications.Kyoto,Japan,2003: 65-72
[10]  Li Haoyuan,Wang Yi,Zhang Dong,et al.PFP: Parallel FP-Growth for Query Recommendation // Proc of the ACM Conference on Recommender Systems.Lausanne,Switzerland,2008: 107-111

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133