全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于变精度粗糙集的KNN分类改进算法

, PP. 617-623

Keywords: K最近邻(KNN),变精度粗糙集,上下近似

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统KNN算法具有简单、稳定和高效的特点,在实际领域得到广泛应用。但算法的时间复杂度与样本规模成正比,大规模或高维数据会降低KNN分类效率。文中通过引入变精度粗糙集模型,提出一种改进的KNN分类算法。算法运用变精度粗糙集上下近似概念,将各类训练样本划分为核心和边界区域,分类过程计算新样本与各类的近似程度,获取新样本的归属区域,减小分类代价,增强算法的鲁棒性。实验表明,与传统KNN算法相比,文中算法保持较高的分类精度并有效提高分类效率,具有一定的理论与实际价值。

References

[1]  Lingras P,Chad W.Interval Set Clustering of Web Users with Rough K-Means.Journal of Intelligent Information Systems,2004,23(1): 5-16
[2]  Falcón R,Jeon G,Lee K,et al.Mechanisms of Partial Supervision in Rough Clustering Approaches // Proc of the 4th International Conference on Rough Sets and Knowledge Technology.Gold Coast,Australia,2009: 33-45
[3]  Pawan L.Unsupervised Rough Set Classification Using Gas.Journal of Intelligent Information Systems,2001,16(3): 215-228
[4]  Witten L H,Frank E.Data Mining: Practical Machine Learning Tools and Techniques.2nd Edition.New York ,USA: Elsevier,2005
[5]  Wu Xindong,Kumar V,Quinlan J R,et al.Top 10 Algorithms in Data Mining.Knowledge and Information Systems,2008,14(1): 1-37
[6]  Hu Yan,Wu Huzi,Zhong Luo.Research of Chinese Web Classification Method Based on Improved KNN Algorithm.Journal of Wuhan University: Engineering,2007,40(4): 141-144 (in Chinese)(胡 燕,吴虎子,钟 珞.基于改进的KNN算法的中文网页自动分类方法研究.武汉大学学报:工学版,2007,40(4): 141-144)
[7]  Li Ronglu,Hu Yunfa.A Density-Based Method for Reducing the Amount of Training Data in KNN Text Classification.Journal of Computer Research and Development,2004,41(4): 539-545 (in Chinese)(李荣陆,胡运发.基于密度的KNN文本分类器训练样本裁剪方法.计算机研究与发展,2004,41(4): 539-545)
[8]  Zhang Xiaofei,Huang Heyan.An Improved KNN Text Categorization Algorithm by Adopting Cluster Technology.Pattern Recognition and Artificial Intelligence,2009,22(6): 936-940 (in Chinese)(张孝飞,黄河燕.一种采用聚类技术改进的KNN文本分类方法.模式识别与人工智能,2009,22(6): 936-940)
[9]  Wang Yu,Bai Shi,Wang Zhengou.A Fast KNN Algorithm Applied to Web Text Categorization.Journal of the China Society for Scientific and Technical Information,2007,26(1): 60-64(in Chinese)(王 煜,白 石,王正欧.用于Web文本分类的快速KNN算法.情报学报,2007,26(1): 60-64)
[10]  Ziarko W.Variable Precision Rough Sets Model.Journal of Computer and System Science,1993,46(1): 39-59
[11]  Zhang Nan,Miao Duoqian,Yue Xiaodong. Approaches to Knowledge Reduction in Interval-Valued Information System,2010,47(8): 1362-1371 (in Chinese)(张 楠,苗夺谦,岳晓冬.区间值信息系统的知识约简.计算机研究与发展,2010,47(8): 1362-1371)
[12]  Pawlak Z.Rough Sets.International Journal of Computer and Information Science,1982,11(3): 341- 356.
[13]  Katzberg J D,Ziarko W.Variable Precision Rough Sets with Asymmetric Bounds // Proc of the International Workshop on Rough Sets and Knowledge Discovery: Rough Sets,Fuzzy Sets and Knowledge Discovery.Banff,Canada,1993: 167-177
[14]  Dai Liuling,Huang Heyan,Chen Zhaoxiong.A Comparative Study on Feature Selection in Chinese Text Categorization.Journal of Chinese Information Processing,2004,18(1): 26-32 (in Chinese)(代六玲,黄河燕,陈肇雄.中文文本分类中特征抽取方法的比较研究.中文信息学报,2004,18(1): 26-32)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133