全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于约束的典型相关分析集成学习算法

, PP. 851-858

Keywords: 典型相关分析(CCA),成对约束,集成学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

基分类器的差异性对于集成学习来说至关重要,从直观上讲,对约束重采样有潜力获得比对样本重采样更好的多样性。文中在典型相关分析算法基础上,通过引入成对约束作为监督信息对样本进行特征抽取从而形成新的训练数据。算法中集成学习的思想主要体现在成对约束的选取上,对约束进行随机重采样以获得具有多样性的基分类器。在多特征手写体数据集以及人脸数据集(Yale和AR)上进行实验考察该算法随选取的约束比例变化的情况,结果表明该方法获得比传统集成学习方法更好的性能。

References

[1]  Guillaumin M,Verbeek J J,Schmid C.Multimodal Semi-Supervised Learning for Image Classification // Proc of the 23rd IEEE Conference on Computer Vision and Pattern Recognition.San Francisco,USA,2010: 902-909
[2]  Blum A,Mitchell T.Combining Labeled and Unlabeled Data with Co-Training // Proc of the 11th Annual Conference on Computational Learning Theory.Madison,USA,1998: 92-100
[3]  Abhishek K,Hal Daumé III.A Co-Training Approach for Multi-View Spectral Clustering // Proc of the 28th International Conference on Machine Learning.Bellevue,USA,2011: 393-400
[4]  Nigam K,Ghani R.Analyzing the Effectiveness and Applicability of Co-Training // Proc of the International Conference on Information and Knowledge Management.Washington,USA,2000: 86-93
[5]  Hotelling H.Relation between Two Sets of Variates.Biometrica,1936,28 (3/4): 321-377
[6]  Sun Tingkai,Chen Songcan,Yang Jingyu,et al.A Novel Method of Combined Feature Extraction for Recognition // Proc of the 8th IEEE International Conference on Data Mining.Pisa,Italy,2008: 1043-1048
[7]  Dietterich T G.Ensemble Methods in Machine Learning // Proc of the 1st International Workshop on Multiple Classifier Systems.Cagliari,Italy,2000: 1-15
[8]  Breiman L.Bagging Predictors.Machine Learning,1996,24(2): 123-140
[9]  Freund Y,Schapire R E.Experiments with a New Boosting Algorithm // Proc of the 13th International Conference on Machine Learning.Bari,Italy,1996: 148-156
[10]  Ho T K.The Random Subspace Method for Constructing Decision Forests.Pattern Analysis and Machine Intelligence,1998,20(8): 832-844
[11]  Zhang Daoqiang,Chen Songcan,Zhou Zhihua,et al.Constraint Projections for Ensemble Learning // Proc of the 23rd AAAI Conference on Artificial Intelligence.Chicago,USA,2008,II: 758-763
[12]  Okun O,Priisalu H.Multiple Views in Ensembles of Nearest Neighbor Classifiers // Proc of the ICML Workshop on Learning with Multiple Views.Bonn,Germany,2005: 51-58
[13]  Guo H,Viktor H L.Mining Relational Databases with Multi-View Learning // Proc of the 4th International Workshop on Multi-Relational Mining.Chicago,USA,2005: 15-24
[14]  Zhang Jiangchun,Zhang Daoqiang.A Novel Ensemble Construction Method for Multi-View Data Using Random Cross-View Correlation between Within-Class Examples.Pattern Recognition,2011,44(6): 1162-1171
[15]  Peng Yan,Zhang Daoqiang.Semi-Supervised CCA.Journal of Software,2008,19(11): 2822-2832(in Chinese)(彭 岩,张道强.半监督典型相关分析算法.软件学报,2008,19(11): 2822-2832)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133