全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多边形方向可视剖分技术

, PP. 817-825

Keywords: 方向可视,深度可视剖分,最短路径,桥结构,线燃烧

Full-Text   Cite this paper   Add to My Lib

Abstract:

为实现简单多边形内的线燃烧轨迹计算,首先提出线视下方向可视的概念,指出8种可视的直线类型,并总结出7种桥结构模型。通过方向投影把多边形区域分成两个点可视区和两个方向可视区,利用主线和从线的遮挡关系来找桥头和桥尾以完成桥的构造,并实现多边形边界的方向可视剖分。其次,结合点可视剖分算法实现多边形的深度方向可视剖分,并进一步推导出多边形内任意点到任意线段的最短路径。最后,把该算法应用到多边形的线燃烧轨迹计算,取得良好的效果。

References

[1]  Ghosh S K.Visibility Algorithms in the Plane.Cambridge,USA:Cambridge University Press,2007
[2]  Davis L,Benedikt M.Computational Models of Space: Isovists and Isovist Fields.Computer Graphics and Image Processing,1979,11(1): 49-72
[3]  Chazelle B,Guibas L J.Visibility and Intersection Problems in Plane Geometry.Discrete Computational Geometry,1989,4(1): 551-581
[4]  El Gindy H,Avis D.A Linear Algorithm for Computing the Visibility Polygon from a Point.Journal of Algorithms,1981,2(2): 186-197
[5]  Lee D T.Visibility of a Simple Polygon.Computer Vision,Graphics,and Image Processing,1983,22(2): 207-221
[6]  Joe B,Simpson R B.Corrections to Lees Visibility Polygon Algorithm.BIT Numerical Mathematics,1987,27(4): 458-473
[7]  Bhattacharya B K,Ghosh S K,Shermer T.A Linear Time Algorithm to Remove Winding of a Simple Polygon.Computational Geometry: Theory and Applications,2006,33(3): 165-173
[8]  Avis D,Toussaint G T.An Optimal Algorithm for Determining the Visibility of a Polygon from an Edge.IEEE Trans on Computers,1981,100(12): 910-914
[9]  Qu Jilin,Yang Hongwan.Visibility of a Set of Arbitrary Simple Polygons.Journal of Shandong Normal University: Natural Science,2000,15(2): 133-137 (in Chinese)(曲吉林,杨洪万.平面内任意一组简单多边形的可见性.山东师范大学学报:自然科学版,2000,15(2): 133-137)
[10]  Liu Rongzhen,Zhao Jun,Cheng Yaodong.Efficient Point Visibility Algorithm for Simple Polygons.Journal of Engineering Graphics,2009,30(2): 109-113 (in Chinese)(刘荣珍,赵 军,程耀东.求简单多边形可见点的一种新算法.工程图学学报,2009,30(2): 109-113)
[11]  Ou Xinliang.Visibility for a Set of Segments Based on Linear Light Source in the Plane.Journal of National University of Defense Technology,2001,23(1): 102-104 (in Chinese)(欧新良.平面内一组线段相对于线光源的可见性.国防科技大学学报,2001,23(1): 102-104)
[12]  Ou Xinliang,Fang Kui.Visibility for a Set of Segments Based on Parallel Light in the Plane.Journal of Changsha University,2005,19(5): 73-74 (in Chinese)(欧新良,方 逵.平行光照射下平面内一组线段的可见性.长沙大学学报,2005,19(5): 73-74)
[13]  Tarjan R E,van Wyk C J.A Linear-Time Algorithm for Triangulating Simple Polygons // Proc of the 8th Annual ACM Symposium on Theory of Computing.Berkeley,USA,1986: 380-388
[14]  Chazelle B.Triangulating a Simple Polygon in Linear Time.Discrete Computational Geometry,1991,6(1): 485-524
[15]  Guibas L J,Hershberger J,Leven D,et al.Linear-Time Algorithms for Visibility and Shortest Path Problems Inside Triangulated Simple Polygons.Algorithmica,1987,2(1): 209-233
[16]  Toussaint G T.Shortest Path Solves Edge-to-Edge Visibility in a Polygon.Pattern Recognition Letters,1986,4(3): 165-170
[17]  Ghosh S K,Maheshwari A,Pal S P,et al.Characterizing and Recognizing Weak Visibility Polygons.Computational Geometry: Theory and Applications,1993,3(4): 213-233
[18]  Guibas L J,Hershberger J.Optimal Shortest Path Queries in a Simple Polygon.Journal of Computer and System Sciences,1989,39(2): 126-152
[19]  Bose P,Lubiw A,Munro J.Efficient Visibility Queries in Simple Polygons.Computational Geometry: Theory and Applications,2002,23(3): 313-335
[20]  Lien J M,Amato N M.Approximate Convex Decomposition of Polygons.Computational Geometry: Theory and Applications,2006,35(1): 100-123
[21]  Gerdjikov S,Wolff A.Decomposing a Simple Polygon into Pseudo-Triangles and Convex Polygons.Computational Geometry: Theory and Applications,2008,41(1): 21-30

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133