全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部线性判别器融合的非线性流形判别分析

, PP. 1-6

Keywords: 非线性流形,判别分析,Gabriel图,多判别器融合

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出一种基于局部线性判别器融合的方法,在非线性流形上展开判别分析.首先根据Gabriel图对整体流形作局部区域划分,并构造局部线性判别器.然后通过局部判别器融合获取整体非线性判别器:基于边界准则函数,以迭代优化的方式为每个局部判别器分配最佳的权重系数.基于边界准则函数的融合算法,克服小样本问题,消除整体判别器的性能对样本分布的依赖性.在人工合成数据集以及人脸图像库上的实验证明本文算法的有效性.

References

[1]  Roweis S T, Saul L K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 2000, 290(5500): 23232326
[2]  Seung H S, Lee D D. The Manifold Ways of Perception. Science, 2000, 290(5500): 22682269
[3]  Tenenbaum J B, de Silva V, Langford J C. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, 2000, 290(5500): 23192323
[4]  Lu J W, Plataniotis K N, Venetsanopoulos A N. Face Recognition Using LDABased Algorithms. IEEE Trans on Neural Networks, 2003, 14(1): 195200
[5]  Wu Y M, Chan K L. An Extended Isomap Algorithm for Learning MultiClass Manifold // Proc of the IEEE International Conference on Machine Learning and Cybernetics. Shanghai, China, 2004, Ⅵ: 34293433
[6]  Chen H T, Chang H W, Liu T L. Local Discriminant Embedding and Its Variants // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 846853
[7]  Geng Xin, Zhan Dechuan, Zhou Zhihua. Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Trans on Systems, Man, and Cybernetics, 2005, 35(6): 10981107
[8]  Saul L K, Roweis S T. Think Globally, Fit Locally: Unsupervised Learning of Nonlinear Manifolds. Journal of Machine Learning Research, 2003, 4(6): 119155
[9]  Zhang Zhenyue, Zha Hongyuan. Principal Manifolds and Nonlinear Dimension Reduction via Local Tangent Space Alignment. SIAM Journal of Scientific Computing, 2004, 26(1): 313338
[10]  Zhang W, King I. A Study of the Relationship between Support Vector Machine and Gabriel Graph // Proc of the International Joint Conference on Neural Networks. Honolulu, USA, 2002, Ⅰ: 239244
[11]  Roweis S, Saul L K, Hinton G E. Global Coordination of Local Linear Models. Advances in Neural Information Processing System, 2002, 14(2): 889896
[12]  Kim T K, Kittler J. Locally Linear Discriminant Analysis for Multimodally Distributed Classes for Face Recognition with a Single Model Image. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(3): 318327
[13]  Schapire R E, Freund Y, Bartlett P, et al. Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. The Annals of Statistics, 1998, 26(5): 16511686
[14]  Friedman J, Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. The Annals of Statistics, 2000, 28(2): 337407
[15]  Lu J W, Plataniotis K N, Venetsanopoulos A N. Regularization Studies of Linear Discriminant Analysis in Small Sample Size Scenarios with Application to Face Recognition. Pattern Recognition Letters, 2005, 26(2): 181191
[16]  Yale University. Face Database [DB/OL]. [20051215]. http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
[17]  Graham D B, Allinson N M. Characterizing Virtual Eigensignatures for General Purpose Face Recognition // Wechsler H, Phillips P J, Bruce V, eds. Face Recognition: From Theory to Applications. Berlin, Germany: SpringerVerlag, 1998: 446456

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133