全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

球粒子滤波视频跟踪算法

, PP. 513-520

Keywords: 视频跟踪,粒子滤波,退化问题,多样性

Full-Text   Cite this paper   Add to My Lib

Abstract:

粒子退化现象是制约粒子滤波器性能的一个重要因素。为提高粒子采样质量和视频跟踪算法的精度,文中提出球粒子滤波视觉跟踪算法。将球状采样方式引入到粒子更新过程中较好地保证状态空间中粒子的有效性。与传统粒子滤波算法相比,这种采样方式能利用少量粒子实现分布多样性的同时,有效克服粒子退化现象。小球迭代运动可使粒子集朝较大后验概率分布区域移动。球粒子滤波算法不依赖系统状态模型特性可理想实现运动状态不规则的机动目标跟踪。实验结果表明,该算法有效提高粒子利用率,具有较好的跟踪精度。

References

[1]  Hou Zhiqiang,Han Chongzhao.A Survey of Visual Tracking.Acta Automatica Sinica,2006,32(4): 603-617 (in Chinese)(侯志强,韩崇昭.视觉跟踪技术综述.自动化学报,2006,32(4):603-617)
[2]  Nejhum S M S,Ho J,Yang M H.Online Visual Tracking with His-tograms and Articulating Blocks.Computer Vision and Image Understanding,2010,114(8): 901-914
[3]  Chu Jinkui,Li Ronghua,Li Qingying,et al.A Visual Attention Model for Robot Object Tracking.International Journal of Automation and Computing,2010,7(1): 39-46
[4]  Welch G,Bishop G.An Introduction to the Kalman Filter.Technical Report,TR95- 41.Chapel Hill,USA: University of North Carolina,2004: 1-16
[5]  Julier S J,Uhlmann J K.Unscented Filtering and Nonlinear Estimation.Proc of the IEEE,2004,92(3): 401-422
[6]  Gustafsson F,Gunnarsson F,Bergman N,et al.Particle Filters for Positioning,Navigation and Tracking.IEEE Trans on Signal Processing,2002,50(2): 425-437
[7]  Gordon N J,Salmond D J,Smith A F M.Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation.IEEE Proc on Radar and Signal Processing,1993,140(2): 107-113
[8]  Hu Shiqiang,Jing Zhongliang.Overview of Particle Filter Algorithm.Control and Decision,2005,20(4):361-365 (in Chinese)(胡士强,敬忠良.粒子滤波算法综述.控制与决策,2005,20(4):361-365)
[9]  Pitt M K,Shephard N.Filtering via Simulation: Auxiliary Particle Filters.Journal of the American Statistical Association,1999,94(446): 590-599
[10]  Khan Z,Balch T,Dellaert F.MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(11): 1805-1819
[11]  Kotecha J H,Djuric P M.Gaussian Particle Filtering.IEEE Trans on Signal Processing,2003,51(10): 2592-2601
[12]  Lehn-Schioler T,Erdogmus D,Principe J C.Parzen Particle Filters // Proc of the International Conference on Acoustics,Speech,and Signal Processing.Montreal,Canada,2004,V: 781-784
[13]  Bouaynaya N,Schonfeld D.On the Optimality of Motion-Based Particle Filtering.IEEE Trans on Circuits and Systems for Video Technology,2009,19(7): 1068-1072
[14]  Derek Y,Reilly J P,Kirubarajan T,et al.Approximate Conditional Mean Particle Filtering for Linear/Nonlinear Dynamic State Space Models.IEEE Trans on Signal Processing,2008,56(12): 5790-5803
[15]  Yao Anbang,Wang Guijin,Lin Xinggang,et al.An Incremental Bhattacharyya Dissimilarity Measure for Particle Filtering.Pattern Recognition,2010,43(4): 1244-1256
[16]  Campillo F,Rossi V.Convolution Particle Filter for Parameter Estimation in General State-Space Models.IEEE Trans on Aerospace and Electronic Systems,2009,45(3): 1063-1072
[17]  Yao Hongge,Qi Hua,Hao Chongyang.Visual Target Tracking Based on the Adaptive Particle Filter in the Complex Situation.Journal of Electronics Information Technology,2009,31(2):275-278 (in Chinese)(姚红革,齐 华,郝重阳.复杂情形下目标跟踪的自适应粒子滤波算法.电子与信息学报,2009,31(2):275-278)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133