全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于稀疏分解的Besov空间上的医学图像反卷积

, PP. 550-556

Keywords: 稀疏分解,图像反卷积,Besov空间,冗余字典

Full-Text   Cite this paper   Add to My Lib

Abstract:

在稀疏分解框架下,建立在Besov光滑空间上的图像变分泛函反卷积模型。在负Hilbert-Sobolev空间上约束数据项,正则项用稀疏性和光滑性来约束,冗余字典的L1范数作为稀疏性度量,用Besov空间上的半范数作为图像光滑性度量,保证稀疏性的同时也兼顾光滑性。该模型直接求解很困难,文中采用分裂算子的方法,把原模型分裂成图像域反卷积和稀疏表示这两个模型,交叉迭代求解,并给出模型求解的详细伪代码。实验验证算法的收敛性,并和其它模型进行比较,结果表明本文模型反卷积效果较好。

References

[1]  Dupe F X,Fadili J M,Starck J L.A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations.IEEE Trans on Image Processing,2009,18(2): 310-321
[2]  Scholefield A,Dragotti P L.Image Restoration Using a Sparse Quadtree Decomposition Representation // Proc of the 16th IEEE International Conference on Image Processing.Cairo,Egypt,2009: 1473-1476
[3]  Deka B,Bora P K.Despeckling of Medical Ultrasound Images Using Sparse Representation // Proc of the 4th International Conference on Signal Processing and Communication Systems.Gold Coast,Australia,2010: 1-5
[4]  Adler A,Yacov H O,Elad M.A Shrinkage Learning Approach for Single Image Super-Resolution with Overcomplete Representations // Proc of the 11th European Conference on Computer Vision.Heraklion,Greece,2010: 622-635
[5]  Michael E,Figueiredo M A T,Yi M.On the Role of Sparse and Redundant Representations in Image Processing.Proc of IEEE,2010,98(6): 972-982
[6]  Needell D,Vershynin R.Signal Recovery from Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit.IEEE Journal of Selected Topics in Signal Processing,2010,4(2): 310-316
[7]  Chesneau C,Fadili M J,Starck J L.Image Deconvolution by Stein Block Thresholding // Proc of the 16th IEEE International Conference on Image Processing.Cairo,Egypt,2009: 1329-1332
[8]  Dimitris G T,Aristidis C L,Nikolaos P G.Variational Bayesian Sparse Kernel-Based Blind Image Deconvolution with Students-t Priors.IEEE Trans on Image Processing,2009,18(4): 753-764
[9]  Elad M.Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing.New York,USA: Springer-Verlag,2010
[10]  Vonesch C,Unser M.A Fast Iterative Thresholding Algorithm for Wavelet Regularized Deconvolution // Proc of the 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.Arlington,USA,2007: 608-611
[11]  Pu Jian,Zhang Junping.Super-Resolution through Dictionary Learning and Sparse Representation.Pattern Recognition and Artificial Intelligence,2010,23(3): 335-341 (in Chinese)(浦 剑,张军平.基于词典学习和稀疏表示的超分辨率重建.模式识别与人工智能,2010,23(3): 335-341)
[12]  Osher S,Solé A,Vese L.Image Decomposition and Restoration Using Total Variation Minimization and the H-1 Norm.Multiscale Modeling Simulation,2004,1(3): 349-370
[13]  Daubechies I,Teschke G.Wavelet Based Image Decomposition by Variational Functionals.Proc of SPIE,2004,5266: 94-105
[14]  Jiang Lingling,Feng Xiangchu,Yin Haiqing.Variational Image Restoration and Decomposition with Curvelet Shrinkage.Journal of Mathematical Imaging and Vision,2008,30(2): 125-132
[15]  Jiang Lingling,Feng Xiangchu,Yin Haiqing.Blind Image Restoration Algorithm Based on Besov Spaces.Journal of Data Acquisition Processing,2008,23(6): 678-682 (in Chinese)(江玲玲,冯象初,殷海青.基于Besov空间的图像盲复原算法.数据采集与处理,2008,23(6): 678-682)
[16]  Linh H L,Luminita A V.Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces.Applied Mathematics Optimization,2008,58(2): 167-193

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133