Johnson S, Everingham M. Combining Discriminative Appearance and Segmentation Cues for Articulated Human Pose Estimation // Proc of the 12th IEEE International Conference on Computer Vision Workshops. Kyoto, Japan, 2009: 405-412
[2]
Han G J, Zhao Y. Human Pose Estimation Based on Tree-Like Picture Model. Journal of Xi′an University of Posts and Telecommunications, 2013, 18(3): 83-86 (in Chinese) (韩贵金,赵 勇.基于树形图结构模型的人体姿态估计.西安邮电大学学报, 2013, 18(3): 83-86)
[3]
Ukita N. Articulated Pose Estimation with Parts Connectivity Using Discriminative Local Oriented Contours // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2012: 3154-3161
[4]
Eichner M, Ferrari V. Better Appearance Models for Pictorial Structures // Proc of the 20th British Machine Vision Conference. London, UK, 2009: 3.1-3.11
[5]
Ferrari V, Marin-Jimenez M, Zisserman A. Progressive Search Space Reduction for Human Pose Estimation // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008: 1-8
[6]
Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 886-893
[7]
Srinivasan P, Shi J B. Bottom-Up Recognition and Parsing of the Human Body // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA, 2007: 824-831
[8]
Johnson S A. Articulated Human Pose Estimation in Natural Images. Ph.D Dissertation. Leeds, Britain: University of Leeds, 2012
[9]
David M J T, Robert P W D. Support Vector Data Description. Machine Learning, 2004, 54(1): 45-66
[10]
Xiao Y S, Liu B, Cao L B, et al. Multi-sphere Support Vector Data Description for Outliers Detection on Multi-distribution Data // Proc of the IEEE International Conference on Data Mining Workshops. Miami, USA, 2009: 82-87
[11]
Xue Z X, Liu S Y, Liu W L, et al. SVDD Based Learning Algorithm with Progressive Transductive Support Vector Machines. Pattern Recognition and Artificial Intelligence, 2008, 21(6): 721-727 (in Chinese)(薛贞霞,刘三阳,刘万里.基于SVDD的渐进直推式支持向量机学习算法.模式识别与人工智能, 2008, 21(6): 721-727)
[12]
Han G J, Zhu H. Human Pose Estimation Algorithm Based on Pictorial Structure Model. Computer Engineering and Applications, 2013, 49(14): 30-33 (in Chinese)(韩贵金,朱 虹.一种基于图结构模型的人体姿态估计算法.计算机工程与应用, 2013, 49(14): 30-33)
[13]
Wu M R, Ye J P. A Small Sphere and Large Margin Approach for Novelty Detection Using Training Data with Outliers. IEEE Tran on Pattern Analysis and Machine Intelligence, 2009, 31(11): 2088-2092
[14]
Jiang H. Human Pose Estimation Using Consistent Max-Covering // Proc of the IEEE 12th International Conference on Computer Vision. Kyoto, Japan, 2009: 1357-1364
[15]
Tian T P, Sclaroff S. Fast Globally Optimal 2D Human Detection with Loopy Graph Models // Proc of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 81-88
[16]
Singh V K, Nevatia R, Huang C. Efficient Inference with Multiple Heterogeneous Part Detectors for Human Pose Estimation // Proc of the 11th European Conference on Computer Vision. Heraklion, Greece, 2010: 314-327
[17]
Felzenszwalb P F, Huttenlocher D P. Pictorial Structures for Object Recognition. International Journal of Computer Vision, 2005, 61(1): 55-79
[18]
Moeslund T B, Hilton A, Krüger V, et al. Visual Analysis of Humans. London, UK, Springer-Verlag, 2011
[19]
Fischler M A, Elschlager R A. The Representation and Matching of Pictorial Structures. IEEE Transactions on Computers, 1973, c-22(1): 67-92
[20]
Sapp B, Toshev A, Taskar B. Cascaded Models for Articulated Pose Estimation // Proc of the 11th European Conference on Computer Vision. Heraklion, Greece, 2010: 406-420