全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

采用双模飞行的粒子群优化算法*

, PP. 533-539

Keywords: 粒子群优化算法(PSO),双模飞行,变轨飞行模式,决策因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于对现实中鸟群飞行方式的模拟,提出一种采用双模飞行的粒子群优化算法.该算法中的粒子在搜索过程中可使用变轨和不变轨两种飞行模式,并根据群体信息反馈和自身状态选择自己的飞行模式.文中选取典型的高维复杂优化问题作为算法优化性能测试.实验表明该算法的全局搜索能力有较大提高,能有效避免早熟收敛问题,可用于求解高维的复杂优化问题.

References

[1]  Kennedy J, Eberhart R C. Particle Swarm Optimization // Proc of the IEEE International Conference on Neural Networks. Perth, USA, 1995, IV: 1942-1948
[2]  Parsopoulos K E, Vrahatis M N. On the Computation of All Global Minimizers through Particle Swarm Optimization. IEEE Trans on Evolutionary Computation, 2004, 8(3): 211-224
[3]  van den Bergh F, Engelbrecht A P. A Cooperative Approach to Particle Swarm Optimization. IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239
[4]  Lpvbjerg M, Rasmussen T K, Krink T. Hybrid Particle Swarm Optimizer with Breeding and Subpopulation // Proc of the Genetic and Evolutionary Computation Conference. San Francisco, USA, 2001: 469-476
[5]  Suganthan P N. Particle Swarm Optimiser with Neighborhood Operator // Proc of the Congress on Evolutionary Computation. Washington, USA, 1999, Ⅲ: 1958-1962
[6]  Kennedy J, Mendaes R. Neighborhood Topologies in Fully Informed and Best-of-Neighborhood Particle Swarms. IEEE Trans on Systems, Man and Cybernetics: Part C, 2006, 36(4): 515-519
[7]  Liang J J, Suganthan P N. Dynamic Multi-swarm Particle Swarm Optimizer // Proc of the IEEE Swarm Intelligence Symposium. Pa-sadena, USA, 2005: 124-129
[8]  Shi Y H, Eberhart R C. Empirical Study of Particle Swarm Optimization // Proc of the Congress on Evolutionary Computation. Wa-shington, USA, 1999, III: 1945-1950
[9]  Ratnaweera A, Halgamuge S, Watson H C. Self-organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients. IEEE Trans on Evolutionary Computation, 2004, 8 (3): 240-255
[10]  Lü Q, Liu S R, Qiu X N. Design and Realization of Particle Swarm Optimization Based on Pheromone Mechanism. Acta Automatica Sinica, 2009, 35(11): 1410-1419 (in Chinese)(吕 强,刘士荣,邱雪娜.基于信息素机制的粒子群优化算法的设计与实现.自动化学报, 2009, 35(11): 1410 -1419)
[11]  Lü Q, Liu S R. A Particle Swarm Optimization Algorithm with Fully Communicated Information. Acta Electronica Sinica, 2010, 38(3): 664-667 (in Chinese)(吕 强,刘士荣.一种信息充分交流的粒子群优化算法.电子学报, 2010, 38(3): 664-667)
[12]  Liang J J, Qin A K, Suganthan P N, et al. Comprehensive Lear-ning Particle Swarm Optimizers for Global Optimization of Multimodal Functions. IEEE Trans on Evolutionary Computation, 2006, 10(3): 281-295
[13]  Kennedy J, Mendes R. Population Structure and Particle Swarm Performance // Proc of the IEEE Congress on Evolutionary Computation. Honolulu, USA, 2002: 1671-1676
[14]  Wang Xuefei, Wang Fang, Qui Yuhui. Research on a Novel Particle Swarm Algorithm with Dynamic Topology. Computer Science, 2007, 34(3): 205-207 (in Chinese)(王雪飞,王 芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究.计算机科学, 2007, 34(3): 205-207)
[15]  Shi Yuhui, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization // Proc of the Congress on Evolutionary Computaton. Piscataway, USA, 2001: 101-106
[16]  Lü Suzhen, Hou Zhirong. Particle Swarm Optimization with Adaptive Mutation. Acta Electronica Sinica ,2004, 32(3): 416-420 (in Chinese)(吕振肃,侯志荣.自适应变异的粒子群优化算法.电子学报, 2004, 32(3): 416-420)
[17]  He Ran, Wang Yongji, Wang Qing, et al. An Improved Particle Swarm Optimization Based on Self-Adaptive Escape Velocity. Journal of Software, 2005, 16(12): 2036-2044 (in Chinese)(赫 然,王永吉,王 青,等.一种改进的自适应逃逸微粒群算法及实验分析.软件学报, 2005, 16(12): 2036-2044)
[18]  Jiao Bin, Lian Zhigang, Gu Xingsheng. A Dynamic Inertia Weight Particle Swarm Optimization Algorithm. Chaos, Solitons & Fractals, 2008, 37 (3): 698-705
[19]  Sun Jun, Xu Wenbo, Feng Bin. A Global Search of Quantum-Behaved Particle Swarm Optimization // Proc of the Congress on Evolutionary Computation. Washington, USA, 2004, I: 325-331
[20]  Cong Lin,Sha Yuheng,Jiao Licheng. Organizational Evolutionary Particle Swarm Optimization for Numerical Optimization. Pattern Recognition and Artifical Intelligence, 2007, 20(2): 145-153 (in Chinese)(丛 琳,沙宇恒,焦李成.组织进化粒子群数值优化算法.模式识别与人工智能, 2007, 20(2): 145-153)
[21]  Shelokar P S ,Siarry P, Jayaraman V K, et al. Particle Swarm and Ant Colony Algorithms Hybridized for Improved Continuous Optimization. Applied Mathematics and Computation, 2007, 188 (1) : 129-142
[22]  Lü Qiang, Qiu Xuena, Liu Shirong. A Discrete Particle Swarm Optimization Algorithm with Fully Communicated Information // Proc of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation. Shanghai, China, 2009: 393-400
[23]  Shao Zengzhen, Wang Hongguo, Liu Hong. Dimensionality Reduction Symmetrical PSO Algorithm Characterized by Heuristic Detection and Self-Learning. Computer Science, 2010, 37(5): 219-222 (in Chinese)(邵增珍,王洪国,刘 弘.具有启发式探测及自学习特征的降维对称粒子群算法.计算机科学, 2010, 37(5): 219-222)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133