Background. There is a controversy within the medical community regarding the role of domperidone as a galactagogue and the drug has been removed from the US market owing to safety concerns. Objective. To perform a systematic review and meta-analysis of the available data assessing the effect of domperidone on breast milk production in women experiencing insufficient lactation. Study Selection. Randomized controlled trials (RCTs) examining the effect of domperidone on breast milk production of puerperal women were eligible for inclusion. Data Analysis. Absolute and relative changes from baseline were calculated for individual studies and pooled using a random effects model. Results. Three RCTs including 78 participants met the inclusion criteria. All showed a statistically significant increase in breast milk production following treatment with domperidone. The analysis of pooled data demonstrated a statistically significant relative increase of 74.72% ( ) in daily milk production with domperidone treatment compared to placebo. No maternal or neonatal adverse events were observed in any of the trials. Conclusions. Evidence from a few small RCTs of moderate to high quality suggests that domperidone produces a greater increase in breast milk supply than placebo. 1. Introduction The benefits of breastfeeding are well recognized for both the mother and baby; thus, efforts should be made to promote initiation, duration, and exclusivity of breastfeeding [1]. The recently published survey of Canadian women who gave birth and were residing with their infants at the time of the interview has found that breastfeeding intention and initiating rates were fairly high, 90% and 90.3%, respectively, among women of this representative sample [2]. However, reported exclusive breastfeeding rates at three and six months fell substantially—51.7% and 14.4%. While factors that affect breastfeeding success are multiple and nonmodifiable at times, the early recognition and timely management of modifiable risk factors is warranted to improve lactation performance [3]. Various nonpharmacological interventions have been shown to be effective and hence are incorporated in the current clinical recommendations for promoting breastfeeding [1]. Among them are individual and group breastfeeding education provided by lactation specialists, peer counseling, in-person, or telephone support. Pharmacological interventions to improve lactation, mainly dopamine antagonists, are usually recommended only after nonpharmacological modalities have failed, and this is largely due to scarcity of
References
[1]
V. A. Palda, J. M. Guise, C. N. Wathen, and The Canadian Task Force on Preventive Health Care, “Interventions to promote breastfeeding: updated recommendations from the canadian task force on preventive health care,” CTFPHC Technical Report #03-6, Canadian Task Force, London, Ontario, Canada, 2003.
[2]
B. Chalmers, C. Levitt, M. Heaman, B. O'Brien, R. Sauve, and J. Kaczorowski, “Breastfeeding rates and hospital breastfeeding practices in Canada: a national survey of women,” Birth, vol. 36, no. 2, pp. 122–132, 2009.
[3]
N. M. Hurst, “Recognizing and treating delayed or failed lactogenesis II,” Journal of Midwifery and Women's Health, vol. 52, no. 6, pp. 588–594, 2007.
[4]
A. A. Zuppa, P. Sindico, C. Orchi et al., “Safety and efficacy of galactogogues: substances that induce, maintain and increase breast milk production,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 13, no. 2, pp. 162–174, 2010.
[5]
M. Bunik, C. J. Chantry, C. R. Howard et al., “ABM clinical protocol #9: use of galactogogues in initiating or augmenting the rate of maternal milk secretion (First revision January 2011),” Breastfeeding Medicine, vol. 6, no. 1, pp. 41–49, 2011.
[6]
G. J. Hofmeyer and B. Van Iddekinge, “Domperidone and lactation,” The Lancet, vol. 1, no. 8325, p. 647, 1983.
[7]
G. J. Hofmeyr, B. Van Iddekinge, and J. A. Blott, “Domperidone: secretion in breast milk and effect on puerperal prolactin levels,” British Journal of Obstetrics and Gynaecology, vol. 92, no. 2, pp. 141–144, 1985.
[8]
O. P. Da Silva, D. C. Knoppert, M. M. Angelini, and P. A. Forret, “Effect of domperidone on milk production in mothers of premature newborns: a randomized, double-blind, placebo-controlled trial,” Canadian Medical Association, vol. 164, no. 1, pp. 17–21, 2001.
[9]
P. M. Laduron and J. E. Leysen, “Domperidone, a specific in vitro dopamine antagonist, devoid of in vivo central dopaminergic activity,” Biochemical Pharmacology, vol. 28, no. 14, pp. 2161–2165, 1979.
[10]
J. A. Barone, “Domperidone: a peripherally acting dopamine2-receptor antagonist,” Annals of Pharmacotherapy, vol. 33, no. 4, pp. 429–440, 1999.
[11]
D. Patterson, T. Abell, R. Rothstein, K. Koch, and J. Barnett, “A double-blind multicenter comparison of domperidone and metoclopramide in the treatment of diabetic patients with symptoms of gastroparesis,” American Journal of Gastroenterology, vol. 94, no. 5, pp. 1230–1234, 1999.
[12]
E. W. X. Wan, K. Davey, M. Page-Sharp, P. E. Hartmann, K. Simmer, and K. F. Ilett, “Dose-effect study of domperidone as a galactagogue in preterm mothers with insufficient milk supply, and its transfer into milk,” British Journal of Clinical Pharmacology, vol. 66, no. 2, pp. 283–335, 2008.
[13]
US Food and Drug Administration, “FDA warns against women using unapproved drug, domperidone, to increase milk production,” FDA Talk Paper T04-17, June 2004, http://www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/ucm173886.htm.
[14]
N. Ahmad, J. Keith-Ferris, E. Gooden, and T. Abell, “Making a case for domperidone in the treatment of gastrointestinal motility disorders,” Current Opinion in Pharmacology, vol. 6, no. 6, pp. 571–576, 2006.
[15]
C. M. G. Rocha and M. M. Barbosa, “QT interval prolongation associated with the oral use of domperidone in an infant,” Pediatric Cardiology, vol. 26, no. 5, pp. 720–723, 2005.
[16]
D. Djeddi, G. Kongolo, C. Lefaix, J. Mounard, and A. Léké, “Effect of domperidone on QT interval in neonates,” Journal of Pediatrics, vol. 153, no. 5, pp. 663–666, 2008.
[17]
R. M. Ward, B. A. Bates, W. E. Benitz, D. J. Burchfield, J. C. Ring, and R. P. Walls, “The transfer of drugs and other chemicals into human milk,” Pediatrics, vol. 108, no. 3, pp. 776–789, 2001.
[18]
P. O. Anderson and V. Valdés, “A critical review of pharmaceutical galactagogues,” Breastfeeding Medicine, vol. 2, no. 4, pp. 229–242, 2007.
[19]
F. Petraglia, V. De Leo, and S. Sardelli, “Domperidone in defective and insufficient lactation,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 19, no. 5, pp. 281–287, 1985.
[20]
M. L. Campbell-Yeo, A. C. Allen, K. S. Joseph et al., “Effect of domperidone on the composition of preterm human breast milk,” Pediatrics, vol. 125, no. 1, pp. e107–e114, 2010.
[21]
G. H. Guyatt, A. D. Oxman, G. E. Vist et al., “GRADE: an emerging consensus on rating quality of evidence and strength of recommendations,” British Medical Journal, vol. 336, no. 7650, pp. 924–926, 2008.
[22]
D. Follmann, P. Elliott, I. Suh, and J. Cutler, “Variance imputation for overviews of clinical trials with continuous response,” Journal of Clinical Epidemiology, vol. 45, no. 7, pp. 769–773, 1992.
[23]
K. R. Abrams, C. L. Gillies, and P. C. Lambert, “Meta-analysis of heterogeneously reported trials assessing change from baseline,” Statistics in Medicine, vol. 24, no. 24, pp. 3823–3844, 2005.
[24]
J. P. T. Higgins and S. Green, “Chapter 16: special topics in statistics,” in Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0, J. P. T. Higgins, J. Deeks, and D. G. Altman, Eds., The Cochrane Collaboration, 2011, http://www.cochrane-handbook.org.
[25]
K. Thorlund, P. J. Devereaux, J. Wetterslev et al., “Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses?” International Journal of Epidemiology, vol. 38, no. 1, pp. 276–286, 2009.
[26]
J. Brok, K. Thorlund, J. Wetterslev, and C. Gluud, “Apparently conclusive meta-analyses may be inconclusive—Trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal meta-analyses,” International Journal of Epidemiology, vol. 38, no. 1, pp. 287–298, 2009.
[27]
K. Thorlund, A. Anema, and E. Mills, “Interpreting meta-analysis according to the adequacy of sample size. An example using isoniazid chemoprophylaxis for tuberculosis in purified protein derivative negative HIV-infected individuals,” Clinical Epidemiology, vol. 2, no. 1, pp. 57–66, 2010.
[28]
P. Herbison, J. Hay-Smith, and W. J. Gillespie, “Meta-analyses of small numbers of trials often agree with longer-term results,” Journal of Clinical Epidemiology, vol. 64, no. 2, pp. 145–153, 2011.
[29]
T. A. Furukawa, C. Barbui, A. Cipriani, P. Brambilla, and N. Watanabe, “Imputing missing standard deviations in meta-analyses can provide accurate results,” Journal of Clinical Epidemiology, vol. 59, no. 1, pp. 7–10, 2006.
[30]
H. Thiessen Philbrook, N. Barrowman, and A. X. Garg, “Imputing variance estimates do not alter the conclusions of a meta-analysis with continuous outcomes: a case study of changes in renal function after living kidney donation,” Journal of Clinical Epidemiology, vol. 60, no. 3, pp. 228–240, 2007.