全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于相对核和精确度的灰数排序新方法研究

DOI: 10.13195/j.kzyjc.2012.1399, PP. 315-319

Keywords: 灰数,投影,相对核,精确度

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究区间灰数的排序方法,分析已有排序方法的特点和优劣.为了更好地切合实际问题,考虑到灰数的取值论域,基于信息保留原则建立了普通区间灰数到标准灰数的投影法则;依据投影得到的标准灰数提出了相对核和精确度的概念,在此基础上给出了灰数的排序方法,克服了已有排序方法的不足,且使相同灰数的排序区分度在不同的应用背景下有不同的体现,有助于决策者进行分析.最后,通过算例验证了所提出方法的可行性和优越性.

References

[1]  Song P, Liang J Y, Qian Y H. A two-grade approach to ranking interval data[J]. Knowledge-based Systems, 2012, 27(3): 234-244.
[2]  Saeidifar A. Application of weighting functions to the ranking of fuzzy numbers[J]. Computers and Mathematics with Applications, 2011, 62(5): 2246-2258.
[3]  Sevastianov P. Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory[J]. Information Science, 2007, 177(21): 4645-4661.
[4]  Deng J L. Control problems of grey systems[J]. Systems & Control Letters, 1982, 1(5): 288-294.
[5]  刘思峰, 党耀国, 方志耕, 等. 灰色系统理论及其应用[M]. 第5 版. 北京: 科学出版社, 2010: 5-30.
[6]  (Liu S F, Dang Y G, Fang Z G, et al. Grey system theory and its application[M]. 5th ed. Beijing: Science Press, 2010: 5-30.)
[7]  Yang Y J, Robert J. Grey sets and greyness[J]. Information Science, 2012, 185(1): 249-264.
[8]  Shih C S, Hsu Y T, Yeh J, et al. Grey number prediction using the grey modification model with progression technique[J]. Applied Mathematical Modelling, 2011, 35(3): 1314-1321.
[9]  Jiang C, Han X, Liu G R. A nonlinear interval number programming method for uncertain optimization problems[J]. European J of Operational Research, 2008, 188(1): 1-13.
[10]  Senguta A, Pal T K. On comparing interval numers[J]. European J of Operation Research, 2000, 127(1): 28-43.
[11]  方志耕, 刘思峰, 陆芳, 等. 区间灰数表征与算法改进及其GM(1,1) 模型应用研究[J]. 中国工程科学, 2005, 7(2): 57-61.
[12]  (Fang Z G, Liu S F, Lu F, et al. Study on improvement of token and arithmetic of interval grey numbers and its GM(1, 1) model[J]. Engineering Science, 2005, 7(2): 57-61.)
[13]  Xu Z S. Dependent uncertain ordered weighted aggregation operators[J]. Information Fusion, 2008, 9(2): 310-316.
[14]  谢乃明, 刘思峰. 考虑概率分布的灰数排序方法[J]. 系统工程理论与实践, 2009, 29(4): 169-175.
[15]  (Xie N M, Liu S F. On comparing grey numbers with their probability distribution[J]. Systems Engineering-Theory & Practice, 2009, 29(4): 169-175.)
[16]  Xu Z S. On method for uncertain multiple attribute decision making problems with uncertain multiplicative preference information on alternatives[J]. Fuzzy Optimization and Decision Making, 2005, 4(1):131-139.
[17]  Yue Z L. An extended TOPSIS for determining weights of decision makers with interval numbers[J]. Knowledgebased Systems, 2011, 24(1): 146-153.
[18]  王正新, 党耀国, 宋传平. 基于区间数的多目标灰色局势决策模型[J]. 控制与决策, 2009, 24(3): 388-392.
[19]  (Wang Z X, Dang Y G, Song C P. Multi-objective decision model of grey situation based on interval number[J]. Control and Decision, 2009, 24(3): 388 -392.)
[20]  Tsaur R C. Decision risk analysis for an interval TOPSIS method[J]. Applied Mathematics and Computation, 2011, 218(8): 4295-4304.
[21]  刘思峰, 方志耕, 谢乃明. 基于核和灰度的区间灰数运算法则[J]. 系统工程与电子技术, 2010, 32(2): 313-316.
[22]  (Liu S F, Fang Z G, Xie N M. Algorithm rules of interval grey numbers based on the “Kernel” and the degree of greyness of grey numbers[J]. Systems Engineering and Electronics, 2010, 32(2): 313-316.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133