全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有区间时变时滞2-D离散系统的时滞相关稳定与控制

DOI: 10.13195/j.kzyjc.2013.0548, PP. 1041-1046

Keywords: 2-D,离散系统,区间时变时滞,时滞相关,状态反馈,线性矩阵不等式

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对具有区间时变时滞2-D离散系统,利用时滞相关方法,研究其稳定性与控制问题.首先选取含有时滞项上、下界的一个新的Lyapunov函数,对其差分时考虑所有项,得到了基于线性矩阵不等式(LMI)的时滞相关稳定性准则;然后给定时变时滞项的下界,再由一个凸优化问题最大化其上界,进而通过状态反馈实现系统的时滞相关控制,且求解LMI可得到增益矩阵;最后,利用数值算例说明了所得结果有效且优于已有成果.

References

[1]  杨成梧, 邹云. 2-D 线性离散系统[M]. 北京: 国防工业出版社, 1995.
[2]  (Yang CW, Zou Y. 2-D linear discrete systems[M]. Beijing: National Defense Industry Press, 1995.)
[3]  Du C L, Xie L H. Stability analysis and stabilization of uncertain two-dimensional discrete systems: An LMI approach[J]. IEEE Trans on Circuits Systems, 1999, 46(11): 1371-1374.
[4]  Wang Z D, Liu X H. Robust stability of two-dimensional uncertain discrete systems[J]. IEEE Signal Processing Letters, 2003, 10(5): 133-136.
[5]  Liu T. Stability analysis of 2-D systems[J]. Signal Process, 2008, 88(8): 2078-2084.
[6]  Paszke W, Lam J, Galkowski K, et al. Robust stability and stabilization of 2-D discrete state-delayed systems[J]. Systems & Control Letters, 2004, 51(3/4): 277-291.
[7]  Paszke W, Lam J, Galkowski K. ??∞ control of 2-D linear state-delayed systems[C]. The 4th IFAC Workshop on Time Delay Systems. Rocquencourt, 2003: 8-10.
[8]  Chen S F, Fong I K. Robust filtering for 2-D state-delayed systems with NFT uncertainties[J]. IEEE Trans on Signal Process, 2006, 54(1): 274-285.
[9]  Paszke W, Lam J, Galkowski K, et al. Delay-dependent stability condition for uncertain linear 2-D state-delayed systems[C]. Proc of the 45th IEEE Conf on Decision and Control(CDC). San Diego, 2006: 2783-2788.
[10]  Xu J M, Yu L. Delay-dependent H∞ control for 2-D discrete state delay systems in the second FM model[J]. Multidimensional Systems and Signal Processing, 2009, 20(4): 333-349.
[11]  彭丹, 关新平, 龙承念. 2-D 状态滞后系统的时滞相关??∞ 控制[J]. 控制与决策, 2008, 23(10): 1117-1121.
[12]  (Peng D, Guan X P, Long C N. Delay-dependent?H∞ control of 2-D state-delayed systems[J]. Control and Decision, 2008, 23(10): 1117-1121.)
[13]  Peng D, Guan X P. Output feedback?H∞ control for 2-D state-delayed systems[J]. Circuits Systems & Signal Process, 2009, 28(1): 147-167.
[14]  Peng D, Guan X P.?H∞ filtering of 2-D discrete state-delayed systems[J]. Multidimensional Systems and Signal Processing, 2009, 20(3): 265-284.
[15]  Feng Z Y, Xu L, Wu M, et al. Delay-dependent robust stability and stabilization of uncertain 2-D discrete systems with time-varying delays[J]. IET Control Theory and Applications, 2010, 4(10): 1959-1971.
[16]  Zhang R, Zhang Y, Hu C, et al. Delay-range-dependent?H∞ filtering for two-dimensional markovian jump systems with interval delays[J]. IET Control Theory and Applications, 2011, 5(18): 2191-2199.
[17]  彭丹, 华长春. 具有时变状态滞后的非线性2-D 离散系统的稳定性与控制[J]. 控制与决策, 2012, 27(1): 124-128.
[18]  (Peng D, Hua C C. Stability and control of nonlinear 2-D discrete systems with time-varying state delays[J]. Control and Decision, 2012, 27(1): 124-128.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133