全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

合同网协议协商机制收敛性与收敛速率分析

DOI: 10.13195/j.kzyjc.2013.0550, PP. 1027-1034

Keywords: 合同网协议,马尔可夫链,Doebin,理论,收敛性,收敛速率

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对合同网协议协商机制缺乏问题求解质量与效率分析的情况,设定假设条件,构建马尔可夫链模型,得出了利用目前已有的合同类型无法保证全局收敛的结论.在此基础上,提出了变邻域合同系的概念,通过分析控制方式对收敛性的影响,得出了集中式控制可以保证全局收敛以及分布式控制以概率保证全局收敛的结论,并设计了概率的计算方法.采用Doebin理论,对应用变邻域合同系的收敛速率进行分析,得出了集中式控制收敛速率与分布式控制收敛速率的上下界估计.

References

[1]  Martin R Andersson, TuomasWSandholm. Contract types for satisficing task allocation, II: Experimental results[C]. Proc of the AAAI Spring Symposium. Washington DC: AAAI Press, 1998: 1-7.
[2]  Smith R G. The contract net protocol: High level communication and control in a distributed problem solver[J]. IEEE Trans on Computers, 1980, 29(12): 357-366.
[3]  Sandholm T W. An implementation of the contract net protocol based on marginal cost calculations[C]. Proc of the National Conf on Artificial Intelligence. Washington DC: AAAI Press, 1993: 256-262.
[4]  Sandholm T W. Contract types for satisficing task allocation, I: Theoretical results[C]. Proc of the AAAI Spring Symposium. Washington DC: AAAI Press, 1998: 68-75.
[5]  龙涛, 陈岩, 沈林成. 基于合同机制的多UCAV分布式协同任务控制[J]. 航空学报, 2007, 28(2): 352-358.
[6]  (Long T, Chen Y, Shen L C. Distributed cooperative mission control based on contract mechanism for multiple unmanned combat aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 352-358.)
[7]  龙涛, 陈岩, 霍霄华, 等. 战场环境中多无人机动态任务调度[J]. 计算机工程, 2007, 33(10): 36-38.
[8]  (Long T, Chen Y, Huo X H, et al. Dynamic task scheduling of multiple unmanned aerial vehicle in battlefield environment[J]. Computer Engineering, 2007, 33(10): 36-38.)
[9]  Zhao X, Huang H K, He L J. The contract net protocol with trust model in open multi-agent system[C]. Proc of Computational Intelligence and Software Engineering. Beijing: 2009: 1-4.
[10]  于振华, 刘宇, 蔡远利. 基于扩展合同网协议的无线传感器网络协作方法研究[J]. 控制与决策, 2009, 24(1): 61-65.
[11]  (Yu Z H, Liu Y, Cai Y L. On wireless sensor networks collaboration based on an extended contract net protocol[J]. Control and Decision, 2009, 24(1): 61-65.)
[12]  龙涛, 朱华勇, 沈成林. UCAV协同中基于协商的分布式任务分配研究[J]. 宇航学报, 2006, 27(3): 457-463.
[13]  (Long T, Zhu H Y, Shen L C. Negotiation-based distributed task allocation for cooperative multiple unmanned combat aerial vehicles[J]. J of Astronautics, 2006, 27(3): 457-463.)
[14]  唐苏妍, 梅珊, 朱一凡, 等. 基于扩展合同网协议的分布式武器目标分配方法[J]. 系统工程与电子技术, 2011, 33(3): 568-574.
[15]  (Tang S Y, Mei S, Zhu Y F, et al. Distributed weapon target assignment algorithm based on extended contract net protocol[J]. Systems Engineering and Electronics, 2011, 33(3): 568-574.)
[16]  Lesser V, Decker K, Wagner T. Evolution of the GPGP/TAEMS domain-independent coordination framework[J]. Plenary Lecture, 2002, 12(1): 1-2.
[17]  龙涛, 沈林成, 朱华勇, 等. 面向协同任务的多分布式任务分配与协调技术[J]. 自动化学报, 2007, 33(7): 731-737.
[18]  (Long T, Shen L C, Zhu H Y, et al. Distributed task
[19]  allocation & coordination technique of multiple NCAVs for cooperative tasks[J]. Acta Automatica Sinica, 2007, 33(7): 731-737.)
[20]  高黎, 沙基昌. 基于合同网的分布式卫星系统任务优化分配研究[J]. 宇航学报, 2009, 30(2): 815-820.
[21]  (Gao L, Sha J C. Research on task optimal allocation for distributed satellites system based on contract net protocol[J]. J of Astronautics, 2009, 30(2): 815-820.)
[22]  刘跃峰, 张安. 有人机/无人机编队协同任务分配方法[J]. 系统工程与电子技术, 2010, 32(3): 584-588.
[23]  (Liu Y F, Zhang A. Cooperative task assignment method of manned/unmanned aerial vehicle formation[J]. Systems Engineering and Electronics, 2010, 32(3): 584-588.)
[24]  Nenad Mladenovi’c, Dragan Urosevi’c, Said Hanafi. Variable neighborhood search for the travelling deliveryman problem[J]. J of Operations Research, 2012, 11(1): 58-73.
[25]  Sandro Pirkwieser, Gunther R Raidl. Multilevel VNS for periodic routing problems[C]. Evolutionary Computation in Combinatorial Optimization. Istanbul: Springer, 2010: 226-238.
[26]  Rabinovich Y, Wigderson A. An analysis of a simple genetic algorithm[C]. Proc of the 4th Int Conf on Genetic Algorithms. San Mateo: Morgan Kaufmann, 1991: 215-221.
[27]  Marcin Studniarski. Stopping criteria for genertic algorithms with application to multiobjective optimization[C]. The 11th Int Conf on Parallel Problem Solving from Nature. Krakow: Springer, 2010: 697-706.
[28]  Asoh H, Mühlenbein H. On the mean convergence time of evolutionary algorithms without selection and mutation[C]. Parallel Problem Solving From Nature. Berlin: Springer-Verlag, 1994: 88-97.
[29]  Florian Schmitt, Franz Rothlauf. On the importance of the second largest eigenvalue on the convergence rate of genetic algorithms[C]. Proc of the Genetic and Evolutionary Computation Conf. San Francisco: Morgan Kaufmann, 2001: 559-564.
[30]  Rosenthal J S. Quantititive convergence rates of Markov chains: A simple account[J]. Electronic Communications in Probability, 2002, 7(13): 123-128.
[31]  Daniel W Stroock. An introduction to Markov processes[M]. Berlin: Springer, 2007: 25-81.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133