全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于相对熵的概率假设密度滤波器序贯蒙特卡罗实现方式

DOI: 10.13195/j.kzyjc.2013.0513, PP. 997-1002

Keywords: 多目标跟踪,概率假设密度,序贯蒙特卡罗,相对熵

Full-Text   Cite this paper   Add to My Lib

Abstract:

概率假设密度滤波器的典型序贯蒙特卡罗实现方式与粒子滤波类似,均是利用大量加权粒子估计多目标状态,典型实现方式是为每个期望目标分配固定数目的粒子,这导致较大的算法时间开销.鉴于此,建立了基于相对熵的序贯蒙特卡罗实现方式.首先计算两个不同规模粒子集合的相对熵,与预设阈值进行比较以确定粒子数目,从而动态调整粒子数目.仿真结果表明,所提出的实现方式提高了跟踪效率,在大部分时间步上优于典型实现方式.

References

[1]  Bar-Shalom Y, Li X R. Multitarget-multisensor tracking: Principle and techniques[M]. Storrs: YBS Publishing, 1995: 307-372.
[2]  Mahler R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Trans on Aerospace and Electronic Systems. 2003, 39(4): 1152-1178.
[3]  Mahler R. PHD filters of higher order in target number[J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.
[4]  Mahler R. A survey of PHD filter and CPHD filter implementations[C]. Proc of the SPIE Conf on Signal Processing, Sensor Fusion and Target Recognition XVI. Orlando: SPIE, 2007, 6567: 1-12.
[5]  Streit R L, Stone L D. Bayes derivation of multitarget intensity filters[C]. Proc of the 11th Int Conf on Information Fusion. Cologne: IEEE Press, 2008: 1-8.
[6]  Erdinc O, Willett P, Bar-Shalom Y. The Bin-occupancy filter and its connection to the PHD filters[J]. IEEE Trans on Signal Processing, 2009, 57(11): 4232-4246.
[7]  Vo B N, Singh S, Doucet A. Sequential monte carlo methods for multi-target filtering with random finite sets[J]. IEEE Trans on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.
[8]  Whiteley N, Singh S, Godsill S. Auxiliary particle implementation of probability hypothesis density filter[J]. IEEE Trans on Aerospace and Electronic Systems, 2010, 46(3): 1437-1454.
[9]  Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
[10]  Vo B T, Vo B N, and Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 55(7): 3553-3567.
[11]  Mahler R. Statistical multisource-multitarget information fusion[M]. Boston: Artech House, 2007: 609-631.
[12]  Ristic B, Clark D, Vo B N. Improved SMC implementation of the PHD filter[C]. Proc of the 13th Int Conf on Information Fusion. Edinburgh: IEEE Press, 2010: 1-8.
[13]  Yan X, Han C, Liu J. State extraction of probability hypothesis density filter based on Dirichlet distribution[C]. Proc of the 13th Int Conf on Information Fusion. Edinburgh: IEEE Press, 2010: 1-6.
[14]  Ristic B, Clark D, Vo B N, et al. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Trans on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668.
[15]  Baser E, Efe M. A novel auxiliary particle PHD filter[C]. Proc of the 15th Int Conf on Information Fusion. Singapore: IEEE Press, 2012: 165-172.
[16]  Fox D. Adapting the sample size in particle filters through KLD-sampling[J]. The Int J of Robotics Research, 2003, 22(12): 985-1003.
[17]  Karlsson R, Gustafsson F. Monte Carlo data association for multiple target tracking[J]. Target Tracking: Algorithms and Applications, 2001, 1(1): 1-5.
[18]  段琢华, 蔡自兴, 于金霞. 移动机器人软故障检测与补偿的自适应粒子滤波算法[J]. 中国科学E 辑: 信息科学, 2008, 38(4): 565-578.
[19]  (Duan Z H, Cai Z X, Yu J X. The adaptive particle filter algorithm for mobile robot software fault detection and compensation[J]. Science in China Series E: Engineering and Materials Science, 2008, 38(4): 565-578.)
[20]  Kullback S, Leibler R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.
[21]  Hoffman J R, Mahler R, Zajic T. User-defined information
[22]  and scientific performance evaluation[C]. Proc of the SPIE Conference on Signal Processing, Sensor Fusion and Target Recognition X. Orlando: SPIE, 2001, 4380: 300-311.
[23]  El-Fallah A I, Mahler R P, Zajic T, et al. Scientific performance evaluation for sensor management[C]. Proc of the SPIE Conf on Signal Processing, Sensor Fusion and Target Recognition IX. Orlando: SPIE, 2000: 183-194.
[24]  Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Trans on Signal Processing, 2008, 56(8): 3447-3457.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133