Bar-Shalom Y, Li X R. Multitarget-multisensor tracking: Principle and techniques[M]. Storrs: YBS Publishing, 1995: 307-372.
[2]
Mahler R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Trans on Aerospace and Electronic Systems. 2003, 39(4): 1152-1178.
[3]
Mahler R. PHD filters of higher order in target number[J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.
[4]
Mahler R. A survey of PHD filter and CPHD filter implementations[C]. Proc of the SPIE Conf on Signal Processing, Sensor Fusion and Target Recognition XVI. Orlando: SPIE, 2007, 6567: 1-12.
[5]
Streit R L, Stone L D. Bayes derivation of multitarget intensity filters[C]. Proc of the 11th Int Conf on Information Fusion. Cologne: IEEE Press, 2008: 1-8.
[6]
Erdinc O, Willett P, Bar-Shalom Y. The Bin-occupancy filter and its connection to the PHD filters[J]. IEEE Trans on Signal Processing, 2009, 57(11): 4232-4246.
[7]
Vo B N, Singh S, Doucet A. Sequential monte carlo methods for multi-target filtering with random finite sets[J]. IEEE Trans on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245.
[8]
Whiteley N, Singh S, Godsill S. Auxiliary particle implementation of probability hypothesis density filter[J]. IEEE Trans on Aerospace and Electronic Systems, 2010, 46(3): 1437-1454.
[9]
Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
[10]
Vo B T, Vo B N, and Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Trans on Aerospace and Electronic Systems, 2007, 55(7): 3553-3567.
[11]
Mahler R. Statistical multisource-multitarget information fusion[M]. Boston: Artech House, 2007: 609-631.
[12]
Ristic B, Clark D, Vo B N. Improved SMC implementation of the PHD filter[C]. Proc of the 13th Int Conf on Information Fusion. Edinburgh: IEEE Press, 2010: 1-8.
[13]
Yan X, Han C, Liu J. State extraction of probability hypothesis density filter based on Dirichlet distribution[C]. Proc of the 13th Int Conf on Information Fusion. Edinburgh: IEEE Press, 2010: 1-6.
[14]
Ristic B, Clark D, Vo B N, et al. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Trans on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668.
[15]
Baser E, Efe M. A novel auxiliary particle PHD filter[C]. Proc of the 15th Int Conf on Information Fusion. Singapore: IEEE Press, 2012: 165-172.
[16]
Fox D. Adapting the sample size in particle filters through KLD-sampling[J]. The Int J of Robotics Research, 2003, 22(12): 985-1003.
[17]
Karlsson R, Gustafsson F. Monte Carlo data association for multiple target tracking[J]. Target Tracking: Algorithms and Applications, 2001, 1(1): 1-5.
(Duan Z H, Cai Z X, Yu J X. The adaptive particle filter algorithm for mobile robot software fault detection and compensation[J]. Science in China Series E: Engineering and Materials Science, 2008, 38(4): 565-578.)
[20]
Kullback S, Leibler R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.
[21]
Hoffman J R, Mahler R, Zajic T. User-defined information
[22]
and scientific performance evaluation[C]. Proc of the SPIE Conference on Signal Processing, Sensor Fusion and Target Recognition X. Orlando: SPIE, 2001, 4380: 300-311.
[23]
El-Fallah A I, Mahler R P, Zajic T, et al. Scientific performance evaluation for sensor management[C]. Proc of the SPIE Conf on Signal Processing, Sensor Fusion and Target Recognition IX. Orlando: SPIE, 2000: 183-194.
[24]
Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Trans on Signal Processing, 2008, 56(8): 3447-3457.