(Hu W J, Wang S T. Fast classification approach of support vector machine with privacy preservation[J]. Acta Electronica Sinica. 2012, 40(2): 280-286.)
(Zhang Z C, Wang S T, Zhong F L. Collaborative classification mechanism for privacy-preserving[J]. J of Computer Research and Development, 2011, 48(6): 1018-1028.)
[8]
Quadrianto N, Smola A J, Caetano T S, et al. Estimating labels from label proportions[J]. J of Machine Learning Research, 2009, (10): 2349-2374.
[9]
Tao J W, Chung F L, Wang S T. On minimum distribution discrepancy support vector machine for domain adaptation[J]. Pattern Recognition, 2012, 45(11): 3962-3984.
(Hong J M, Yin J, Huang Y, et al. TrSVM: A transfer learning algorithm using domain similarity[J]. J of Computer Research and Development, 2011, 48(10): 1823-1830.)
[12]
Quanz B, Huan J. Large margin transductive transfer learning[C]. Proc of the 18th ACM Conf on Information and Knowledge Management. New York, 2009: 1327-1336.
[13]
Gao J, Fan W, Jiang J, et al. Knowledge transfer via multiple model local structure mapping[C]. Proc of the 14th ACM SIGKDD Inter Conf on Knowledge Discovery and Data Mining. New York, 2008: 283-291.
[14]
Stolpe M, Morik K. Learning from label proportions by optimizing cluster model selection[C]. Proc of Machine Learning and Knowledge Discovery in Databases-European Conference 2011. Berlin: Heidelberg, 2011: 349-364.
[15]
Quadrianto N, Smola A J, Caetano T S, et al. Estimating labels from label proportions[C]. The 25th Int Conf on Machine Learning. Omnipress, 2008: 776-783.
[16]
Rüping S. SVM classifier estimation from group probabilities[C]. The 27th Int Conf on Machine Learning. Haifa, 2010: 911-918.
[17]
Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 123-167.
[18]
Platt J C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[C]. Advances in Large Margin Classifiers. Cambridge: MIT Press, 1999: 61-74.
[19]
Tsang IW, Kwok J T, Zurada J M. Generalized core vector machines[J]. IEEE Trans Neural Network, 2006, 17(5): 1126-1140
[20]
Guillermo L G, Lucas C U, Alejandro C H, et al. Solving nonstationary classification problems with coupled support vector machines[J]. IEEE Trans on Knowledge on Neural Network, 2011, 22(1): 37-51
[21]
Scholkopf B, Herbrich R, Smola A J. A generalized representer theorem[C]. Proc of Conf on Learning Theory. Amsterdam: Springer Press, 2001: 416-426.
[22]
邓乃杨, 田英杰. 数据挖掘的新方法—支持向量机[M]. 北京: 科学出版杜, 2004.
[23]
(Deng N Y, Tian Y J. New method in data mining: Support vector machine[M]. Beijing: Science Press, 2004.)
[24]
He X F, Cai D, Partha N. Laplacian score for feature selection[J]. Advances in Neural Information Proc System, 2006(18): 507-514 .
[25]
Asuncion A, Newman D J. UCI machine learning repository[DB/OL]. [2008-11-01]. http://archive.ics.uci.edu/ml/.
[26]
Joachims T. Transductive inference for text classification using support vector machines[C]. Proc of 16th Int Conf on Machine Learning. San Francisco, Morgan Kaufmann Publishers, 1999: 200-209.
[27]
Chang C C, Lin C J. LIBSVM: A library for support vector machines[EB/OL]. [2008-11-04]. http://www.csie. ntu.edu.tw/cjlin/libsvm.