全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

甘油间歇发酵酶催化非线性动力系统的强稳定性

DOI: 10.13195/j.kzyjc.2013.0890, PP. 1505-1508

Keywords: 非线性动力系统,线性变分系统,基本矩阵解,强稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

以甘油生物转化生产1,3-丙二醇(简记为1,3-PD)的间歇发酵酶催化过程为背景,研究一类既无法求得解析解、又没有平衡点的非线性动力系统.论述了该类系统关于初始状态的解集的紧性以及对应的线性变分系统基本矩阵解的性质,并证明了非线性动力系统的强稳定性.所做的研究可以为进一步的数值计算提供理论依据.

References

[1]  (Gao C X, Wang Z T, Feng E M, et al. Idenfinition and optimal control of biodissimilation of glycerol to 1, 3-propanediol in microorganism batch culture[J]. J of Dalian University of Technology, 2006, 46(5): 771-774.)
[2]  李晓红, 冯恩民, 修志龙. 微生物间歇发酵非线性动力系统的性质及最优控制[J]. 运筹学学报, 2005, 9(4): 89-96.
[3]  (Li X H, Feng E M, Xiu Z L. Idenfinition and optimal control of nonlinear dynamic system in microorganism batch culture[J]. Operations Research Transactions, 2005, 9(4): 89-96.)
[4]  姜永, 李艳杰, 冯恩民, 等. 一种非线性多阶段动力系统的最优控制及数值优化[J]. 生物数学学报, 2010, 25(4): 616-622.
[5]  (Jiang Y, Li Y J, Feng E M, et al. Optimal control and numerical optimization of a class of nonlinear multi-stage dynamic system[J]. J of Biomathematics, 2010, 25(4): 616-622.)
[6]  Wang H Y, Feng E M, Xiu Z L. A class of nonlinear multi-stage dynamical system and its optimal control[J]. Rocky Mt. Rocky Mountain J of Mathematics, 2008, 38(5): 1745-1760.
[7]  Jiang Z G, Yuan J L, Feng E M. Robust identification and its properties of nonlinear bilevel multi-stage dynamic system[J]. Applied Mathematics and Computation, 2013, 19(12): 6979-6985.
[8]  Wang J, Ye J X, Feng E M, et al. Modeling and identification of a nonlinear hybrid dynamical system in batch fermentation of glycerol[J]. Mathematical and Computer Modelling, 2011, 54(1): 618-624.
[9]  Wang J, Ye J X, Yin H C, et al. Sensitivity analysis and identification of kinetic parameters in batch fermentation of glycerol[J]. J of Computational and Applied Mathematics, 2012, 236: 2268-2276.
[10]  陈征, 高岩. 切换系统的二类共同Lyapunov 函数[J]. 控制与决策, 2013, 28(4): 623-631.
[11]  (Chen Z, Gao Y. Two class of common Lyapunov function of switched systems[J]. Control and Decision, 2013, 28(4): 623-631.)
[12]  Zeng A P. A kinetic model for product formation of microbial and mammalian cells[J]. Biotechnology and Bioengineering, 1995, 46(4): 314-324.
[13]  修志龙, 曾安平, 安利佳. 甘油生物歧化过程动力学数学模型和多态研究[J]. 大连理工大学学报, 2000, 46(4): 428-433.
[14]  (Xiu Z L, Zeng A P, An L J. Mathematical modeling of kinetics and research on multiplicity of glycerol bioconversion to 1, 3-propanediol[J]. J of Dalian University of Technology, 2000, 46(4): 428-433.)
[15]  高彩霞, 王宗涛, 冯恩民, 等. 微生物间歇发酵生产1, 3-丙二醇过程的辨识与优化[J]. 大连理工大学学报, 2006, 46(5): 771-774.
[16]  Chen Z, Gao Y. On common linear copositive Lyapunov function for pairs of stable posotive linear systems[J]. Nonlinear Analysis: Hybrid Systems, 2009, 3(4): 467-474.
[17]  Chen Z, Gao Y. The Computation of common infinity-norm Lyapunov function for linear switched systems[J]. J of Information and Computing Science, 2011, 6(4): 261-268.
[18]  Choi S K, Koo N. On the stablility of linear dynamic system on time scales[J]. J of Difference Equations and Applications, 2009, 15(2): 167-183.
[19]  Choi S K, Cui Y H, Koo N. Variationally stable dynamic systems on time scales[J]. Advances in Difference Equations, 2012, 2012(1): 1-17.
[20]  侯定丕. 常微分方程[M]. 北京: 人民教育出版社, 1980: 107-110.
[21]  (Hou D P. ordinary differential equation[M]. Beijing: People’s Education Press, 1980: 107-110.)
[22]  Lakshmikantham V, Leela S. Differential and integral inequalities with theory and application[M]. New York: Academic Press, 1969: 76-79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133