全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑模型误差的浸出过程优化方法

DOI: 10.13195/j.kzyjc.2013.0976, PP. 1408-1412

Keywords: 浸出过程,高斯混合模型,优化模型,粒子群优化算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于浸出过程较为复杂,其过程模型难以准确地反映实际过程,导致基于该模型的过程优化结果不是实际最优值.基于此,提出一种考虑模型误差的浸出过程优化方法,利用高斯混合模型对浸出过程混合模型的误差均值和方差进行描述,并将其引入优化目标中.构建考虑模型误差的浸出过程优化模型,并以二阶振荡粒子群优化算法完成对优化模型的求解.最后通过仿真实验表明了所提出方法的有效性.

References

[1]  Gu J C, Wan B W. Steady state hierarchical optimizing control for large-scale industrial process with fuzzy parameters[J]. IEEE Trans on Systems, Man and Cybernetics, 2001, 31(3): 352-360.
[2]  Nie X H, Huang G H, Li Y P, et al. A hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty[J]. J of Environmental Management, 2007, 84(1): 1-11.
[3]  Yang Y Y, Mahdi M. Probabilistic characterization of model error using Gaussian mixture model-with application to Charpoy impact energy prediction for alloy steel[J]. Control Engineering Practice, 2012, 20(1): 82-92.
[4]  胡广浩, 毛志忠, 周俊武, 等. 湿法冶金浸出过程建模与仿真研究[J]. 系统仿真学报, 2011, 23(6): 1220-1224.
[5]  (Hu G H, Mao Z Z, Zhou JW, et al. Study on modeling and simulation for leaching process of hydrometallurgy[J]. J of System Simulation, 2011, 23(6): 1220-1224.)
[6]  龚纯, 王正林. 精通Matlab 最优化计算[M]. 北京: 电子工业出版社, 2009: 296-299.
[7]  (Gong C, Wang Z L. To be proficient in Matlab optimization calculation[M]. Beijing: Publishing House of Electronics Industry , 2009: 296-299.)
[8]  储岳中. 一类基于贝叶斯信息准则的k- 均值聚类算法[J]. 安徽工业大学学报, 2010,27(4): 409-412.
[9]  (Chu Y Z. An?k means clustering algorithm based on Bayesian information criterion[J]. J of Anhui University of Technology, 2010, 27(4): 409-412.)
[10]  Huang Z K, Chau K W. A new image threshold method based on Gaussian mixture model[J]. Applied Mathematics and Computation, 2008, 205(2): 899-907.
[11]  胡广浩, 毛志忠, 何大阔. 浸出过程浸出率预测与在线优化[J]. 系统工程学报, 2011, 26(4): 524-530.
[12]  (Huang G H, Mao Z Z, He D K. Prediction of leaching rate and on-line optimization operation of leaching process[J]. J of System Engineering, 2011, 26(4): 524-530.)
[13]  Shih J S, Frey H C. Coal blending optimization under uncertainty[J]. European J of Operational Research, 1995, 83(3): 452-465.
[14]  Zhang Y, Monder D. Real-time optimization under parametric uncertainty: A probability constrained approach[J]. J of Process Control, 2002, 12(3): 373-389.
[15]  Crundwell F K, Godorr S A. A mathematical model of the leaching of gold in cyanide solutions[J]. Hydrometallurgy, 1997, 44(2): 147-162.
[16]  Andrade lima L, Hodouin D. Residence time distribution for a mechanically agitated cyanidation tank[J]. Minerals Engineering, 2005, 18(6): 613-621.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133