全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非线性卡尔曼滤波方法的实验比较

DOI: 10.13195/j.kzyjc.2013.0657, PP. 1387-1393

Keywords: 非线性卡尔曼滤波,性能比较,动态目标跟踪,飞行机器人

Full-Text   Cite this paper   Add to My Lib

Abstract:

实际系统中存在的非线性因素和不确定性是实时状态测量以及不确定性估计算法需要解决的重要问题.以机器人系统中典型的动态目标观测问题为背景,采用多飞行机器人实验平台,分别针对EKF、UKF以及基于MIT规则的AUKF方法进行实验研究,并比较了上述方法的计算速度及估计精度等性能.最后,根据实验结果并结合其原理分析了每种方法的特性.

References

[1]  Ito K, Xiong K Q. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans on Automatic Control, 2000, 45(5): 910-927.
[2]  陈世明, 郑丽楠, 吴龙龙, 等. 面向3 维空间的移动机器人快速自适应SLAM算法[J]. 信息与控制, 2012, 41(4): 419-424.
[3]  (Chen S M, Zheng L N, Wu L L, et al. A fast and adaptive SLAM algorithm for mobile robots in three-dimensional space[J]. Information and Control, 2012, 41(4): 419-424.)
[4]  魏喜庆, 宋申民. 无模型容积卡尔曼滤波及其应用[J]. 控制与决策, 2013, 28(5): 769-773.
[5]  (Wei X Q, Song S M. Model-free cubature Kalman filter and its application[J]. Control and Decesion, 2013, 28(5): 769-773.)
[6]  Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariance in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482.
[7]  Garcia-Velo J. Determination of noise covariances for extended Kalman filter parameter estimators to account for modeling errors[D]. Cincinnati: College of Engineering, University of Cincinnati, 1997: 5-7.
[8]  Lee D, Alfriend K T. Adaptive sigma point filtering for state and parameter estimation[C]. Astrodynamics Specialist Conf and Exhibit. Providence, 2004: 1-20.
[9]  Loebis D, Sutton R, Chudley J, et al. Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system[J]. Control Engineering Practice, 2004, 12(12): 1531-1539.
[10]  宋崎, 韩建达. 基于UKF的移动机器人主动建模及模型自适应控制方法[J]. 机器人, 2005, 27(3): 226-230.
[11]  (Song Q, Han J D. UKF-based active modeling and modelreference adaptive control for mobile robots[J]. Robot, 2005, 27(3): 226-230.)
[12]  吴萌, 马杰, 田金文, 等. 自适应无迹卡尔曼滤波算法在地磁导航中的应用[J]. 信息与控制, 2012, 40(4): 558-562.
[13]  (Wu M, Ma J, Tian J W, et al. An adaptive UKF algorithm and its application to geomagnetic navigation[J]. Information and Control, 2012, 40(4): 558-562.)
[14]  Kalman R E. A new approach to linear filtering and prediction problems[J]. IEEE Trans ASME J of Basic Engineering, 1960, 82(1): 35-45.
[15]  Gordon N J, Salmond D J, Smith A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEEE Proc of Radar and Signal Processing, 1993, 140(2): 107-113.
[16]  Gu F, Wang Z, He Y Q, et al. Theoretical and experimental study of uncertain set based moving target localization using multiple robots[C]. IEEE Int Conf on Robotics and Biomimetics. Phuket, 2011: 1646-1651.
[17]  Gu F, Wang Z, He Y Q, et al. Experimental study of vision sensor based multiple robots active cooperative observation using multi-RFRs testbed[C]. IEEE Int Conf on Robotics and Biomimetics. Phuket, 2011: 2417-2418.
[18]  Wang Z, Gu F, He Y Q, et al. Design and implementation of multiple-rotorcraft-flying-robot testbed[C]. IEEE Int Conf on Robotics and Biomimetics. Phuket, 2011: 1291-1296.
[19]  Song Q, He Y Q. Adaptive unscented Kalman filter for estimation of modeling errors for helicopter[C]. IEEE Int Conf on Robotics and Biomimetics. Guilin, 2009: 2463-2467.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133