全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于偏最小二乘分析的双模粒子滤波目标跟踪

DOI: 10.13195/j.kzyjc.2013.1207, PP. 1372-1378

Keywords: 目标跟踪,偏最小二乘,黎曼流形,粒子滤波,双模

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对在复杂背景下,基于主成分分析(PCA)的目标跟踪方法准确率较低的问题,使用偏最小二乘分析,提出一种双模粒子滤波的跟踪算法.首先采用偏最小二乘分析对目标区域建模,作为观测模型;然后利用仿射变换描述目标的形变过程,分别在李群及其切向量空间上建立双模的动态模型;最后结合特征空间更新策略,使用粒子滤波实现目标跟踪.实验表明,所提出的算法能够有效滤除背景噪声,跟踪结果稳定且准确.

References

[1]  Wu Y, Wu B, Liu J, et al. Probabilistic tracking on riemannian manifolds[C]. The 19th Int Conf on Pattern Recognition. Florida, 2008: 1-4.
[2]  Kwon J H, Lee K M, Par F C. Visual tracking via geometric particle filtering on the affine group with optimal importance functions[C]. IEEE Conf on Computer Vision and Pattern Recognition. Seoul, 2009: 991-998.
[3]  朱明清, 王智灵, 陈宗海. 基于灰色预测模型和粒子滤波的视觉目标跟踪算法[J]. 控制与决策, 2012, 27(1): 53-57
[4]  (Zhu M Q,Wang Z L, Chen Z H. Visual tracking algorithm based on grey prediction model and particle filter[J]. Control and Decision, 2012, 27(1): 53-57.)
[5]  Liu Y P, Li G W, Shi Z L. Covariance tracking via geometric particle filtering[J]. J on Advances in Signal Processing, 2010: 1-9.
[6]  Wu Y, Cheng J, Wang J Q. Real-time probabilistic covariance tracking with efficient model update[J]. IEEE Trans on Image Processing, 2012, 21(5): 2824-2837.
[7]  Khan Z H, Gu I Y H. Tracking visual and infrared objects using joint riemannian manifold appearance and affine shape modeling[C]. IEEE Int Conf on Computer Vision Workshops. Gothenburg, 2011: 1847-1854.
[8]  Wang Q, Xu W L. Object tracking via partial least squares analysis[J]. IEEE Trans on Image Processing, 2012, 21(10): 4454-4465.
[9]  陈志敏, 薄煜明, 吴盘龙, 等. 基于自适应粒子群优化的新型粒子滤波在目标跟踪中的应用[J]. 控制与决策, 2013, 28(2): 193-200.
[10]  (Chen Z M, Bo Y M, Wu P L, et al. Novel particle filter algorithm based on adaptive particle swarm optimization and its application to radar target tracking[J]. Control and Decision, 2013, 28(2): 193-200.)
[11]  Porikli F, Tuzel O, Meer P. Covariance tracking using model update based on Lie algebra[C]. IEEE Computer Society Conf on Computer Vision and Pattern Recognition. New York, 2006: 728-735.
[12]  Li G W, Liu Y P, Yin J. Target tracking with feature covariance based on an improved lie group structure[J]. Chinese J of Scientific Instrument, 2010, 31(1): 111-116.
[13]  Khan Z H, Gu I Y. Bayesian online learning on riemannian manifolds using a dual model with applications to video object tracking[C]. IEEE Int Conf on Computer Vision Workshops. Gothenburg, 2011: 1042-1409.
[14]  Wu Y, Wu B, Liu J, et al. Probabilistic tracking on riemannian manifolds[C]. The 19th Int Conf on Pattern Recognition. Florida, 2008: 1-4.
[15]  Ross D, Lim J, Lim R S, et al. Incremental learning for robust visual tracking[J]. Int J of Computer Vision, 2008, 77(1): 125-141.
[16]  Cai H, Li N, Zhao H J. The tracking approach for small target with complex background based on spectral features[C]. The 8th IEEE Int Symposium on Instrumentation and Control Technology. London, 2012: 55-60.
[17]  陆文, 蔡敬菊. 基于鲁棒子空间学习的粒子滤波跟踪算法[J]. 计算机应用研究, 2011, 28(9): 3579-3584.
[18]  (Lu W, Cai J J. Object tracking using robust subspace learning in particle filter[J]. Application Research of Computers, 2011, 28(9): 3579-3584.)
[19]  Roman R, Nicole K. Overview and recent advances in partial least squares[J]. Latent Structures Feature Selection, 2006, 3940: 34-51.
[20]  Srinivasan B V, Zotkin D N. Duraiswami R. A partial least squares framework for speaker recognition[C]. The IEEE Int Conf on Acoustics, Speech and Signal Processing. Prague, 2011: 5276-5279.
[21]  Berger M. A panoramic view of Riemannian geometry[M]. Berlin: Springer, 2003: 161-232.
[22]  Hall B C. Lie algebras and representations: An elementary introduction[M]. NewYork: Springer, 2003: 3-58.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133