Yue D, Han Q L, Peng C. State feedback controller design of networked control systems[J]. IEEE Trans on Circuits and Systems-II: Express Briefs, 2004, 51(11): 640-644.
[2]
He Y, Wu M, She J H, et a1.Parameter-dependent Lyapunov functional for stability of time-delay systems with polytypic-type uncertainties[J]. IEEE Trans on Automatic Contro1, 2004, 49(5): 828-832.
[3]
He Y, Wang Q G, Lin C, et al. Delay-range-dependent stability for systems with time-varying delay[J]. Automatica, 2007, 43(2): 371-376.
[4]
Gu K. An integral inequality in the stability problem of time-delay systems[C]. The 39th IEEE Conf on Decision and Control. Sydney, 2000: 2805-2810.
[5]
Han Q L. Absolute stability of time-delay systems with sector-bounded nonlinearity[J]. Automatica, 2005, 41(12): 2171-2176.
[6]
Zhang X M, Wu M, Han Q L, et al. A new integral inequality to delay-dependent robust control[J]. Asian J of Control, 2006, 8(2): 153-160.
[7]
Zhang X M, Han Q L. New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks[J]. IEEE Trans on Neural Networks, 2009, 20(3): 533-539.
[8]
Gu K, Kharitonov V L, Chen J. Stability of time-delay systems[M]. Basel: Birkhauser, 2003: 1-17.
[9]
Sun J, Liu G P, Chen J, et al. Improved delay-rangedependent stability criteria for linear systems with timevarying delays[J]. Automatica, 2010, 46(2): 466-470.
[10]
Kwon O M, Park J H, Lee S M. An improved delaydependent criterion for asymptotic stability of uncertain dynamic systems with time-varying delays[J]. J of Optimization Theory and Applications, 2010, 145(2): 343-353.
[11]
Ramakrishnan K, Ray G. Robust stability criteria for uncertain neutral systems with interval time-varying delay[J]. J of Optimization Theory and Applications, 2011, 149(2): 366-384.
[12]
Ramakrishnan K, Ray G. Delay-dependent robust stability criteria for linear uncertain systems with interval time varying delay[C]. IEEE Region 10 Conf on TENCON 2009. Singapore: IEEE, 2009: 1-6.
[13]
Jiang X F, Han Q L. New stability criteria for linear systems with interval time varying delay[J]. Automatica, 2008, 44(10): 2680-2685.
[14]
Shao H Y. New delay-dependent stability criteria for systems with interval delay[J]. Automatica, 2009, 45(3): 744-749.
[15]
Xu S Y, Lam J. On equivalence and efficiency of certain stability criteria for time-delay systems[J]. IEEE Trans on Automatic Control, 2007, 52(1): 95-101.
[16]
Han Q L. A discrete delay decomposition approach to stability of linear retarded and neutral systems[J]. Automatica, 2009, 45(2): 517-524.
[17]
Peng C, Tian Y. Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J]. IET Control Theory and Application, 2008, 2(9): 752-761.
[18]
Balasubramaniam P, Nagamani G. A delay decomposition approach to delay-dependent passivity analysis for interval neural networks with time-varying delay[J]. Neurocomputing, 2011, 74(10): 1646-1653.
[19]
Ramakrishnan K, Ray G. Robust stability criteria for
[20]
uncertain linear systems with interval time-varying delay[J]. J of Control Theory and Applications, 2011, 9(4): 559-566.
[21]
Wang C, Shen Y. Delay partitioning approach to robust stability analysis for uncertain stochastic systems with interval time-varying delay[J]. IET Control Theory and Applications, 2012, 6(7): 875-883.
[22]
Yue D, Tian D, Zhang Y. A piecewise analysis method to stability analysis of continuous/discrete systems with timevarying delay[J]. Int J of Robust Nonlinear Control, 2009, 19(13): 1493-1518.
[23]
Petersen I R, Hollot C V. A Riccati align approach to the stabilization of uncertain linear systems[J]. Automatica, 1986, 22(4): 397-411.