全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于时滞分割法的区间变时滞不确定系统鲁棒稳定新判据

DOI: 10.13195/j.kzyjc.2013.0120, PP. 907-912

Keywords: Lyapunov-Krasovskii,(L-K),泛函,鲁棒稳定,区间时滞,积分不等式,线性矩阵不等式

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对一类存在泛数有界不确性的区间变时滞线性系统,利用Lyapunov-Krasovskii(L-K)泛函方法并结合线性矩阵不等式(LMI)技术建立一种新的保守性更低的鲁棒稳定性判据.首先基于时滞分割方法将时滞区间均分成N等分,针对不同的子区间构造合适的L-K泛函;然后在各自的分割区间采用保守性较小的积分不等式处理泛函沿时间的导数,基于凸组合技术建立了LMI形式的时滞相关稳定性新判据;最后通过数值实例验证了结论的有效性.

References

[1]  Yue D, Han Q L, Peng C. State feedback controller design of networked control systems[J]. IEEE Trans on Circuits and Systems-II: Express Briefs, 2004, 51(11): 640-644.
[2]  He Y, Wu M, She J H, et a1.Parameter-dependent Lyapunov functional for stability of time-delay systems with polytypic-type uncertainties[J]. IEEE Trans on Automatic Contro1, 2004, 49(5): 828-832.
[3]  He Y, Wang Q G, Lin C, et al. Delay-range-dependent stability for systems with time-varying delay[J]. Automatica, 2007, 43(2): 371-376.
[4]  Gu K. An integral inequality in the stability problem of time-delay systems[C]. The 39th IEEE Conf on Decision and Control. Sydney, 2000: 2805-2810.
[5]  Han Q L. Absolute stability of time-delay systems with sector-bounded nonlinearity[J]. Automatica, 2005, 41(12): 2171-2176.
[6]  Zhang X M, Wu M, Han Q L, et al. A new integral inequality to delay-dependent robust control[J]. Asian J of Control, 2006, 8(2): 153-160.
[7]  Zhang X M, Han Q L. New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks[J]. IEEE Trans on Neural Networks, 2009, 20(3): 533-539.
[8]  Gu K, Kharitonov V L, Chen J. Stability of time-delay systems[M]. Basel: Birkhauser, 2003: 1-17.
[9]  Sun J, Liu G P, Chen J, et al. Improved delay-rangedependent stability criteria for linear systems with timevarying delays[J]. Automatica, 2010, 46(2): 466-470.
[10]  Kwon O M, Park J H, Lee S M. An improved delaydependent criterion for asymptotic stability of uncertain dynamic systems with time-varying delays[J]. J of Optimization Theory and Applications, 2010, 145(2): 343-353.
[11]  Ramakrishnan K, Ray G. Robust stability criteria for uncertain neutral systems with interval time-varying delay[J]. J of Optimization Theory and Applications, 2011, 149(2): 366-384.
[12]  Ramakrishnan K, Ray G. Delay-dependent robust stability criteria for linear uncertain systems with interval time varying delay[C]. IEEE Region 10 Conf on TENCON 2009. Singapore: IEEE, 2009: 1-6.
[13]  Jiang X F, Han Q L. New stability criteria for linear systems with interval time varying delay[J]. Automatica, 2008, 44(10): 2680-2685.
[14]  Shao H Y. New delay-dependent stability criteria for systems with interval delay[J]. Automatica, 2009, 45(3): 744-749.
[15]  Xu S Y, Lam J. On equivalence and efficiency of certain stability criteria for time-delay systems[J]. IEEE Trans on Automatic Control, 2007, 52(1): 95-101.
[16]  Han Q L. A discrete delay decomposition approach to stability of linear retarded and neutral systems[J]. Automatica, 2009, 45(2): 517-524.
[17]  Peng C, Tian Y. Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J]. IET Control Theory and Application, 2008, 2(9): 752-761.
[18]  Balasubramaniam P, Nagamani G. A delay decomposition approach to delay-dependent passivity analysis for interval neural networks with time-varying delay[J]. Neurocomputing, 2011, 74(10): 1646-1653.
[19]  Ramakrishnan K, Ray G. Robust stability criteria for
[20]  uncertain linear systems with interval time-varying delay[J]. J of Control Theory and Applications, 2011, 9(4): 559-566.
[21]  Wang C, Shen Y. Delay partitioning approach to robust stability analysis for uncertain stochastic systems with interval time-varying delay[J]. IET Control Theory and Applications, 2012, 6(7): 875-883.
[22]  Yue D, Tian D, Zhang Y. A piecewise analysis method to stability analysis of continuous/discrete systems with timevarying delay[J]. Int J of Robust Nonlinear Control, 2009, 19(13): 1493-1518.
[23]  Petersen I R, Hollot C V. A Riccati align approach to the stabilization of uncertain linear systems[J]. Automatica, 1986, 22(4): 397-411.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133