全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多维泰勒网的非线性时间序列预测方法及其应用

DOI: 10.13195/j.kzyjc.2013.0198, PP. 795-801

Keywords: 时间序列,多维泰勒网,施工安全性监测,预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对非线性时间序列,提出一种基于多维泰勒网的时间序列预测方法.其特点在于利用非线性时间序列的观测数据,通过多维泰勒网得到??元一阶多项式差分方程组,在无需待预测系统的任何先验知识和机理的情况下获得动力学特性描述,实现对非线性时间序列的预测.最后分别采用Lorenz混沌时间序列,以及某大型建筑在顶升施工安全性监测中的结构振动响应数据进行实证研究,所得结果表明了该方法的有效性.

References

[1]  Box G E, Jenkins G M, Reinsel G C. Time series analysis forecasting and control[M]. Beijing: Posts & Telecom Press, 2005: 19-180.
[2]  Chen S, Billings S A. Representation of non-linear systems: The NARMAX model[J]. Int J of Control, 1989, 49(3): 1013-1042.
[3]  王革丽, 杨培才, 毛宇清. 基于支持向量机方法对非平稳时间序列的预测[J]. 物理学报, 2008, 57(2): 714-719.
[4]  (Wang G L, Yang P C, Mao Y Q. On the application of non-stationary time series prediction based on the SVM method[J]. Acta Physica Sinica, 2008, 57(2): 714-719.)
[5]  刘涵, 刘丁, 李琦. 基于支持向量机的混沌时间序列非线性预测[J]. 系统工程理论与实践, 2005, 25(9): 94-99.
[6]  (Liu H, Liu D, Li Q. Chaotic time series nonlinear prediction based on support vector machines[J]. Systems Engineering-Theory & Practice, 2005, 25(9): 94-99.)
[7]  张晓平, 赵珺, 王伟, 等. 基于最小二乘支持向量机的焦炉煤气柜位预测模型及应用[J]. 控制与决策, 2010, 25(8): 1178-1183.
[8]  (Zhang X P, Zhao J, Wang W, et al. COG holder level prediction model based on least square support vector machine and its application[J]. Control and Decision, 2010, 25(8): 1178-1183.)
[9]  Hornik K, Stinchcombe M, White H. Multi-layer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(3): 359-366.
[10]  谭文, 王耀南, 周少武, 等. 混沌时间序列的模糊神经网络预测[J]. 物理学报, 2003, 52(4): 795-801.
[11]  (Tan W, Wang Y N, Zhou S W, et al. Prediction of the chaotic time series using neuro-fuzzy networks[J]. Acta Physica Sinica, 2003, 52(4): 795-801.)
[12]  丁刚, 钟诗胜. 基于过程神经网络的时间序列预测及其应用研究[J]. 控制与决策, 2006, 21(9): 1037-1041.
[13]  (Ding G, Zhong S S. Time series prediction based on process neural networks and its applications[J]. Control and Decision, 2006, 21(9): 1037-1041.)
[14]  李松, 刘力军, 解永乐. 遗传算法优化BP 神经网络的短时交通流混沌预测[J]. 控制与决策, 2011, 26(10): 1581-1585.
[15]  (Li S, Liu L J, Xie Y L. Chaotic prediction for short-term traffic flow of optimized BP neural network based on genetic algorithm[J]. Control and Decision, 2011, 26(10): 1581-1585.)
[16]  Klambauer G. Mathematical analysis[M]. New York: Marcel Dekker INC, 1975: 236-237.
[17]  孟庆芳, 张强, 牟文英. 混沌时间序列多步自适应预测方法[J]. 物理学报, 2006, 55(4): 1666-1671.
[18]  (Meng Q F, Zhang Q, MuWY. A novel multi-step adaptive prediction method for chaotic time series[J]. Acta Physica Sinica, 2006, 55(4): 1666-1671.)
[19]  闫华, 魏平, 肖先赐. 基于Bernstein 多项式的自适应混沌时间序列预测算法[J]. 物理学报, 2007, 56(9): 5112- 5116.
[20]  (Yan H, Wei P, Xiao X C. An adaptive approach based on Bernstein polynomial to predict chaotic time series[J]. Acta Physica Sinica, 2007, 56(9): 5112-5116.)
[21]  徐赵东, 沈亚鹏, 郭迎庆. 神经网络对结构地震响应的预测及试验研究[J]. 振动与冲击, 2003, 22(2): 8-11.
[22]  (Xu Z D, Shen Y P, Guo Y Q. Neural network prediction for seismic response of structure and experimental study[J]. J of Vibration and Shock, 2003, 22(2): 8-11.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133