全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

知识化制造环境下航空发动机装配车间自进化

DOI: 10.13195/j.kzyjc.2013.0602, PP. 1217-1225

Keywords: 知识化制造,自进化,航空发动机装配车间,可行域,双层遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对产品动态到达的航空发动机装配车间,对知识化制造系统的自进化问题进行研究.将自进化的思想应用于该装配车间,提出了知识化制造环境下该装配车间自进化问题的求解算法.根据双层规划理论,建立了系统在每个决策时刻静态决策问题的一般数学模型,并设计了一种基于可行域搜索的双层遗传算法(FR-BiGA)对模型进行求解.仿真结果验证了该模型与算法的有效性和可行性,且实验数据表明,自进化的系统具有相对较优的生产性能.

References

[1]  严洪森, 刘飞. 知识化制造系统—新一代先进制造系统[J]. 计算机集成制造系统, 2001, 7(8): 7-11.
[2]  (Yan H S, Liu F. Knowledgeable manufacturing system—A new kind of advanced manufacturing system[J]. Computer Integrated Manufacturing Systems, 2001, 7(8): 7-11.)
[3]  汪浩祥, 严洪森. 基于多Agent 可互操作知识化制造动态自适应调度策略[J]. 控制与决策, 2013, 28(2): 161-168.
[4]  (Wang H X, Yan H S. Interoperable dynamic adaptive scheduling strategy in knowledgeable manufacturing based on multi-agent[J]. Control and Decision, 2013, 28(2): 161-168.)
[5]  徐延锋. 航空发动机装配数字化关键技术研究与实现[D]. 西安: 西北工业大学机电学院, 2006.
[6]  (Xu Y F. Research on key technology for digital assembly based on aero-engine[D]. Xi’an: School of Mechanical Engineering, Northwest Poly-technical University, 2006.)
[7]  王福吉, 赵国凯, 贾振元, 等. 基于可行域遗传算法的装配作业调度[J]. 计算机集成制造系统, 2010, 16(1): 115-120.
[8]  (Wang F J, Zhao G K, Jia Z Y, et al. Assembly job-shop scheduling based on feasible solution space genetic algorithm[J]. Computer Integrated Manufacturing Systems, 2010, 16(1): 115-120.)
[9]  Supachai P, Pius J E. An algorithm for minimizing weighted earliness penalty in assembly job shops[J]. Int J of Production Economics, 2006, 103(1): 230-245.
[10]  王林平, 贾振元, 王福吉, 等. 含装配约束的作业调度问题及遗传解码算法[J]. 大连理工大学学报, 2010, 50(4): 535-539.
[11]  (Wang L P, Jia Z Y, Wang F J, et al. Job-shop scheduling problem incorporating assembly constraint and its solution using genetic decoding approach[J]. J of Dalian University of Technology, 2010, 50(4): 535-539.)
[12]  Wong T C, Ngan S C. A comparison of hybrid genetic algorithm and hybrid particle swarm optimization to minimize makespan for assembly job shop[J]. Applied Soft Computing, 2013, 13(3): 1391-1399.
[13]  高春华, 李人厚, 陈浩勋. 智能选择启发规则的FMS 实时调度方法[J]. 控制与决策, 1998, 13(4): 361-364.
[14]  (Gao C H, Li R H, Chen H X. Intelligent extraction of heuristic rules in FMS real-time scheduling[J]. Control and Decision, 1998, 13(4): 361-364.)
[15]  魏英姿, 赵明扬. 一种基于强化学习的作业车间动态调度方法[J]. 自动化学报, 2005, 31(5): 765-771.
[16]  (Wei Y Z, Zhao M Y. A reinforcement learningbased approach to dynamic job-shop scheduling[J]. Acta Automatica Sinica, 2005, 31(5): 765-771.)
[17]  Zhang L P, Gao L, Li X Y. A hybrid genetic algorithm and tabu search for a multi-objective dynamic job shop scheduling problem[J]. Int J of Production Research, 2013, 51(12): 3516-3531.
[18]  Nguyen S, ZhangMJ, Johnston M, et al. Learning iterative dispatching rules for job shop scheduling with genetic programming[J]. J of Intelligent Manufacturing, 2013, 67(1/2/3/4): 85-100.
[19]  航空制造工程手册总编委会. 航空制造工程手册—发动机装配与试车[M]. 北京: 航空工业出版社, 1996: 76-79.
[20]  (The general editor committee of manual for aviation manufacturing engineering. The manual for aviation manufacturing engineering—Engine assembly and test[M]. Beijing: Aviation Industry Press, 1996: 76-79.)
[21]  王世进. 基于自治与协商机制的柔性制造车间智能调度技术研究[D]. 上海: 上海交通大学机械与动力工程学院, 2008.
[22]  (Wang S J. Intelligent scheduling technology in flexible manufacturing shop floor based on mechanism of autonomy and coordination[D]. Shanghai: School of Mechanical Engineering, Shanghai Jiaotong University, 2008.)
[23]  谢志强. 工件间有约束的复杂产品工序调度研究[D]. 哈尔滨: 哈尔滨理工大学机械动力工程学院, 2009.
[24]  (Xie Z Q. Study on operation scheduling of complex product with constraint among jobs[D]. Harbin: School of Mechanical Engineering, Harbin University of Science and Technology, 2009.)
[25]  周亚平, 刘剑宇, 殷保群, 等. 半Markov 过程性能势的并行仿真估计[J]. 系统工程, 2005, 23(12): 103-108.
[26]  (Zhou Y P, Liu J Y, Yin B Q, et al. The estimation of the semi-Markov process performance potentials based on parallel simulation[J]. Systems Engineering, 2005, 23(12): 103-108.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133