全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有自适应全局最优引导快速搜索策略的人工蜂群算法

DOI: 10.13195/j.kzyjc.2013.1003, PP. 2041-2047

Keywords: 人工蜂群算法,自适应,邻域搜索,函数优化,最优引导

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对人工蜂群算法存在开发与探索能力不平衡的缺点,提出了具有自适应全局最优引导快速搜索策略的改进算法.在该策略中,首先采蜜蜂利用自适应搜索方程平衡了不同搜索方法的探索和开发能力;其次跟随蜂利用全局最优引导邻域搜索方程对蜜源进行精细化搜索,以提高其收敛精度和全局搜索能力.14个标准测试函数的仿真结果表明,相比其他算法,所提出的改进算法有效平衡了算法的开发与探索能力,并提高了其最优解的精度及收敛速度.

References

[1]  Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE Int Conf on Neural Networks. Perth, 1995: 1942-1949.
[2]  Tang K S, Man K F, Kwong S, et al. Genetic algorithms and their applications[J]. IEEE Signal Processing Magazine, 1996, 13(6): 22-37.
[3]  Dorigo M, Stutzle T. Ant colony optimization[M]. Cambrige: MA MIT Press, 2004.
[4]  Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony(ABC) algorithm[J]. J of Global Optimization, 2007, 39(3): 459-471.
[5]  Karaboga D, Basturk B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-32.
[6]  Karaboga D, Akay B. A modified artificial bee colony(ABC) algorithm for constrained optimization problems[J]. Applied Soft Computing, 2011, 11(3): 3021-3031.
[7]  Karaboga D. A novel clustering approach: Artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2011, 11(1): 652-657.
[8]  Hsieh T J, Hsiao H F. Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(2): 2510-2525.
[9]  Gao W F, Liu S Y. A modified artificial bee colony algorithm[J]. Computers and Operations Research, 2012, 39(3): 687-697.
[10]  Zhu G P, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
[11]  Karaboga D, Gorkemli B. A quick artificial bee colony(qABC) algorithm for optimization problems[R]. Erciyes University, Engineering Faculty, Computer Engineering Department, 2012.
[12]  Kang F, Li J L, Ma Z Y. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions[J]. Information Sciences, 2011, 181(16): 3508-3531.
[13]  高卫峰, 刘三阳, 黄玲玲. 受启发的人工蜂群算法在全局优化问题中的应用[J]. 电子学报, 2012, 40(12): 2396-2403.
[14]  (Gao W F, Liu S Y, Huang L L. Inspired artificial bee colony algorithm for global optimization problems[J]. Acta Electronica Sinica, 2012, 40(12): 2396-2403.)
[15]  吴建辉, 章兢, 李仁发, 等. 多子种群微粒群免疫算法及其在函数优化中的应用[J]. 计算机研究与发展, 2012, 49(9): 1883-1898.
[16]  (Wu J H, Zhang J, Li R F, et al. A multi-subpopulation PSO immune algorithm and its application on function optimization[J]. J of Computer Research and Development, 2012, 49(9): 1883-1898.
[17]  Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133