全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

自适应分组混沌云模型蛙跳算法求解连续空间优化问题

DOI: 10.13195/j.kzyjc.2014.0387, PP. 923-928

Keywords: 混合蛙跳算法,云模型,混沌,连续空间优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对经典混合蛙跳优化算法寻优精度不高和易陷入局部收敛区域的缺点,结合云模型在定性与定量之间相互转换的优良特性,提出一种自适应分组混沌云模型蛙跳算法.通过反向学习机制初始化种群,应用云模型算法对优秀子群组的收敛区域进行局部搜索更优位置,应用混沌理论在收敛区域以外空间探索全局最优位置.典型复杂函数测试表明,所提出的算法能有效找出全局最优解,适用于多峰值函数寻优.

References

[1]  Eusuff M M, Lansey K E. Optimization of water distribution network designusing shuffled frog leaping algorithm[J]. J of Water Resources Planning and Management, 2003, 129(3): 210-225.
[2]  Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization algorithms[J]. Advanced Engineering Informatics, 2005, 19(1): 43-53.
[3]  Amiri B, Fathian M, Maroosi A. Application of shuffled frog-leaping algorithmon clustering[J]. Int J of Advanced Manufacturing Technology, 2009, 45(1/2): 199-209.
[4]  Rahimi-Vahed A, Mirzaei A H. A hybrid multi-objective shuffled frog leaping algorithm for a mixed-model assembly line sequencing problem[J]. Computersand Industrial Engineering, 2007, 53(4): 642-666.
[5]  Rahimi-Vahed A, Mirzaei A H. Solving a bi-criteria permutation flow-shopproblem using shuffled frog-leaping algorithm[J]. Soft Computing, 2008, 12(5): 435-452.
[6]  Bhaduri A. A clonal selection based shuffled frog leaping algorithm[C]. IEEE Int Conf on Advance Computing. Piscataway: IEEE Press, 2009, 3: 125-130.
[7]  李英海, 周建中, 杨俊杰, 等. 一种基于阈值选择策略的改进混合蛙跳算法[J]. 计算机工程与应用, 2007, 43(35): 19-21.
[8]  (Li Y H, Zhou J Z, Yang J J, et al. Modified shuffled frog leaping algorithm based on threshold se-lection strategy[J]. Computer Engineering and Applications, 2007, 43(35): 19-21.)
[9]  罗雪晖, 杨烨, 李霞. 改进混合蛙跳算法求解旅行商问
[10]  题[J]. 通信学报, 2009, 30(7): 130-135.
[11]  (Luo X H, Yang Y, Li X. Modified shuffled frog-leaping algorithm to solve traveling salesman problem[J]. J on Communications, 2009, 30(7): 130-135.)
[12]  赵鹏军. 优化问题的几种智能算法[D]. 西安: 西安电子科技大学数学与统计学院, 2009.
[13]  (Zhao P J. Several intelligent algorithms for optimization problems[D]. Xi’an: School of Mathematics and Statistics, Xidian University, 2009.)
[14]  唐德玉, 蔡先发, 齐德昱, 等. 基于量子粒子群搜索策略的混合蛙跳算法[J]. 计算机工程与应用, 2012, 48(29): 29-33.
[15]  (Tang D Y, Cai X F, Qi D Y, et al. Shuffled frog leaping algorithm based on particle swarm optimization searching strategy[J]. Computer Engineering and Applications, 2012, 48(29): 29-33.)
[16]  付斌, 李道国, 王慕快. 云模型研究的回顾与展望[J]. 计算机应用研究, 2011, 28(2): 420-426.
[17]  (Fu B, Li D G, Wang M K. Review and prospect on research of cloud model[J]. Application Research of Computers, 2011, 28(2): 420-426.)
[18]  刘明周, 张玺, 张铭鑫, 等. 基于损益云模型的制造车间重调度决策方法[J]. 控制与决策, 2014, 29(8): 1458-1464.
[19]  (Liu M Z, Zhang X, Zhang M X, et al. Rescheduling decision method of manufacturing shop based on profit-loss cloud model[J]. Control and Decision, 2014, 29(8): 1458-1464.)
[20]  张英杰, 邵岁锋, Niyongabo J. 一种基于云模型的云变异粒子群算法[J]. 模式识别与人工智能, 2011, 24(1): 90-94.
[21]  (Zhang Y J, Shao S F, Niyongabo J. Cloud hypermutation particle swarm optimization algorithm based on cloud model[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(1): 90-94.)
[22]  张光卫, 何锐, 刘禹, 等. 基于云模型的进化算法[J]. 计算机学报, 2008, 31(7): 1082-1090.
[23]  (Zhang G W, He R, Liu Y, et al. An evolutionary algorithm based on cloud model[J]. Chinese J of Computers, 2008, 31(7): 1082-1090.)
[24]  马颖, 田维坚, 樊养余. 基于云模型的自适应量子免疫克隆算法[J]. 计算物理, 2013, 30(4): 627-632.
[25]  (Ma Y, Tian W J, Fan Y Y. Quantum adaptive immune clone algorithm based on cloud model[J]. Chinese J of Computational Physics, 2013, 30(4): 627-632.)
[26]  Tizhoosh H. Opposition-based learning: A new scheme for machine intelligence[C]. Proc of the Int Conf on Computational Intelligence for Modeling Control and Automation. Piscataway: IEEE Press, 2005: 695-701.
[27]  王燕. 反向粒子群算法理论及及其应用研究[D]. 西安: 西安工程大学理学院, 2011.
[28]  (Wang Y. The research of opposition-based particle swarm optimization and its application[D]. Xi’an: College of Science, Xi’an Polytechnic University, 2011.)
[29]  林娟, 钟一文, 马森林. 改进的反向蛙跳算法求解函数优化问题[J]. 计算机应用研究, 2013, 30(3): 760-763.
[30]  (Lin J, Zhong Y W, Ma S L. Improved opposition-based shuffled frog leaping algorithm for function optimization problems[J]. Application Research of Computers, 2013, 30(3): 760-763.)
[31]  孙儒泳. 动物生态学原理[M]. 第3 版. 北京: 北京师范大学出版社, 2001: 430-431.
[32]  (Sun R Y. Principles of animal ecology[M]. 3rd ed. Beijing: Beijing Normal University Press, 2001: 430-431.)
[33]  崔志华, 曾建潮. 微粒群优化算法[M]. 北京: 科学出版社, 2011: 65-66.
[34]  (Cui Z H, Zeng J C. Particle swarm optimization[M]. Beijing: Science Press, 2011: 65-66.)
[35]  胥小波, 郑康锋, 李丹, 等. 新的混沌粒子群优化算法[J]. 通信学报, 2012, 33(1): 24-37.
[36]  (Xu X B, Zheng K F, Li D, et al. New chaos-particle swarm optimization algorithm[J]. J on Communications, 2012, 33(1): 24-37.)
[37]  刘金梅, 屈强. 几类混沌序列的随机性测试[J]. 计算机工程与应用, 2011, 47(5): 46-49.
[38]  (Liu J M, Qu Q. Randomness tests of several chaotic sequences[J]. Computer Engineering and Applications, 2011, 47(5): 46-49.)
[39]  王元, 方开泰. 关于均匀分布与试验设计(数论方法)[J]. 科学通报, 1981, 26(2): 65-70.
[40]  (Wang Y, Fang K T. Uniform distribution and experimental design(number theoreticm ethod)[J]. Chinese Science Bulletin, 1981, 26(2): 65-70.)
[41]  梁昌勇, 陆青, 张恩桥, 等. 基于均匀设计的多智能体遗传算法研究[J]. 系统工程学报, 2009, 24(1): 109-113.
[42]  (Liang C Y, Lu Q, Zhang E Q, et al. Research on multi-agent genetic algorithm based on uniform design[J]. J of Systems Engineering, 2009, 24(1): 109-113.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133