全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于初始条件优化的一种非等间距GM(1,1)建模方法

DOI: 10.13195/j.kzyjc.2014.0604, PP. 2097-2102

Keywords: 非等间距,GM(1,1),模型,初始条件,单位化序列,权重,优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对非等间距GM(1,1)模型的预测问题,提出一种优化初始条件的方法.以非等间距一阶累加生成序列各分量的加权平均作为优化的初始值,根据新信息优先原理,将一阶累加生成序列的序数序列的单位化序列中各分量作为权重,利用原始序列与模拟序列误差平方和最小的原则确定初始条件中的时间参数,建立优化的非等间距GM(1,1)模型.最后,通过算例验证了所提出的非等间距优化模型的有效性和可行性,同时表明了该优化模型可以提高预测精度.

References

[1]  邓聚龙. 灰理论基础[M]. 武汉: 华中理工大学出版社, 2002: 2-5.
[2]  (Deng J L. The basis of grey theory[M]. Wuhan: Press of Huazhong University of Science and Technology, 2002: 2-5.)
[3]  刘思峰, 党耀国, 方志耕. 灰色系统理论及其应用[M]. 北京: 科学出版社, 2004: 3-6.
[4]  (Liu S F, Dang Y G, Fang Z G. Grey system theory and its application[M]. Beijing: Science Press, 2004: 3-6.)
[5]  吉培荣, 黄巍松, 胡翔勇. 无偏灰色预测模型[J]. 系统工程与电子技术, 2000, 22(6): 6-8.
[6]  (Ji P R, Huang W S, Hu X Y. An unbiased grey forecasting model[J]. Systems Engineering & Electronics, 2000, 22(6): 6-8.)
[7]  穆勇. 具有白指数律重合性的GM(1,1) 模型[J]. 数学的实践与认识, 2002, 32(1): 15-19.
[8]  (Mu Y. The GM(1,1) model with white index law and overlapping nature[J]. Mathematic in Practice and Theory, 2002, 32(1): 15-19.)
[9]  穆勇. 无偏灰色无偏GM(1,1) 模型的直接建模法[J]. 系统工程与电子技术, 2003, 25(9): 1094-1096.
[10]  (Mu Y. A direct modeling method of the unbiased GM(1,1)[J]. Systems Engineering & Electronics, 2003, 25(9): 1094-1096.)
[11]  王义闹, 刘开第, 李应川. 优化灰导数白化值的GM(1,1) 建模法[J]. 系统工程理论与实践, 2001, 21(5): 124-128.
[12]  (Wang Y N, Liu K D, Li Y C. GM(1,1) modeling method of optimum the whitening values of grey derivative[J]. Systems Engineering-Theory&Practice, 2001, 21(5): 124-128.)
[13]  谭冠军. GM(1,1) 模型的背景值构造方法和应用[J]. 系统工程理论与实践, 2000, 20(4): 99-103.
[14]  (Tan G J. The structure method and application of background value in grey system GM(1,1) model[J]. Systems Engineering-Theory & Practice, 2000, 20(4): 99-103.)
[15]  罗党, 刘思峰, 党耀国. 灰色模型GM(1,1) 优化[J]. 中国工程科学, 2003, 5(8): 50-53.
[16]  (Luo D, Liu S F, Dang Y G. The optimization of grey model GM(1,1)[J]. Chinese Engineering Science, 2003, 5(8): 50-53.)
[17]  Wang Z X, Dang Y G, Liu S F. The optimization of background value in GM(1,1) model[J]. J of Grey System, 2007, 10(2): 69-74.
[18]  Lin Y H, Lee P C, Chang T P. Adaptive and highprecision grey forecasting model[J]. Expert Systems with Applications, 2009, 36(6): 9658-9662.
[19]  Dang Y G, Liu S F. The GM models that ??(??) be taken as initial value[J]. Kybernetes, 2004, 33(2): 247-255.
[20]  Xie N M, Liu S F. Discrete grey forecasting model and its optimization[J]. Applied Mathematical Modelling, 2009, 33(2): 1173-1186.
[21]  Wang Y H, Dang Y G, Liu S F. An approach to increase prediction precision of GM(1,1) model based on optimization of the initial condition[J]. Expert Systems with Applications, 2010, 37(8): 5640-5644.
[22]  Deng Ju-long. A novel GM(1,1) model for nonequigap series[J]. J of Grey System, 1997, 9(2): 111-115.
[23]  史雪荣, 王作雷, 张正娣. 变参数非等间距GM(1,1) 模型及应用[J]. 数学的实践与认识, 2006, 36 (6): 216-220.
[24]  (Shi X R, Wang Z L, Zhang Z D. GM(1,1) model with variational parameter for non-equidistant sequence and its application[J]. J of Mathematics in Practice & Theory, 2006, 36(6): 216-220.)
[25]  Wang F X. Improvement on unequal interval gray forecast model[J]. Fuzzy Information and Engineering, 2006, 6(1): 118-123.
[26]  戴文战, 李俊峰. 非等间距GM(1,1) 模型建模研究[J]. 系统工程理论与实践, 2005, 9(9): 89-93.
[27]  (Dai W Z, Li J F. Modeling research on nonequidistance GM(1,1) Model[J]. Systems Engineering-Theory & Practice, 2005, 9(9): 89-93.)
[28]  王叶梅, 党耀国, 王正新. 非等间距GM(1,1) 模型背景值的优化[J]. 中国管理科学, 2008, 16(4): 159-162.
[29]  (Wang Y M, Dang Y G, Wang Z X. The optimization of background value in non-Equidistant GM(1,1) model[J]. Chinese J of Management Science, 2008, 16(4): 159-162.)
[30]  罗佑新. 非等间距新息GM(1,1) 的逐步优化模型及其应用[J]. 系统工程理论与实践, 2010, 30(12): 2254-2258.
[31]  (Luo Y X. Non-equidistant step by step optimum new information GM(1,1) and its application[J]. Systems Engineering-Theory & Practice, 2010, 30(12): 2254-2258.)
[32]  吴清海. 非等间距模型在沉降预测中的应用研究[J]. 工程勘测, 2007, 35(12): 57-60.
[33]  (Wu Q H. The application of the non-equidistant model on subsidence predicting[J]. Geotechnical Investigation & Surveying, 2007, 35(12): 57-60.)
[34]  王正新, 党耀国, 赵洁珏. 优化的GM(1,1) 幂模型及其应用[J]. 系统工程理论与实践, 2012, 32(9): 1973-1978.
[35]  (Wang Z X, Dang Y G, Zhao J J. Optimized GM(1,1) power model and its application[J]. Systems Engineering- Theory & Practice, 2012, 32(9): 1973-1978.)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133