全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于混沌和高斯局部优化的混合差分进化算法

, PP. 899-902

Keywords: 混沌优化,高斯优化,差分进化,遗传算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对标准差分进化(DE)算法在高维复杂函数优化中易早熟收敛,进而导致搜索精度降低甚至优化失败的问题,提出一种基于混沌和高斯局部优化的混合差分进化算法(CGHDE).该算法在进化初期利用混沌的遍历性,可有效地避免算法陷入局部最优;而在进化后期,采用高斯搜索又可有效地提高收敛精度.实验表明,CGHDE算法对函数维度的敏感性大大低于标准DE算法,并且寻优能力强、稳定性好、搜索精度高,特别适合于工程中高维复杂函数的优化问题.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133