全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

液流电池钛基负极电解液在不同温度下的电化学性能

DOI: 10.11949/j.issn.0438-1157.20150363, PP. 287-291

Keywords: 液流电池,钛基电解液,电化学,反应动力学

Full-Text   Cite this paper   Add to My Lib

Abstract:

探究了钛基-盐酸水溶液体系电解液的电化学性能。分别采用循环伏安法、电化学交流阻抗法和动电位扫描法研究了不同温度下电解液电对的电化学反应的可逆性和反应的内部作用机理,以及TiCl3的盐酸水溶液体系在石墨电极上的反应平衡电位、交换电流、传递系数等电极反应的动力学参数。循环伏安结果表明温度上升有利于体系的电化学反应的可逆性,40℃时反应的可逆性最好。交流阻抗实验结果采用LRs(Q(RctW))等效电路模型进行了拟合,结果显示随着温度由10℃上升至40℃,电化学阻抗Rct值由4.192W·cm2降低到0.5321W·cm2,表明温度上升可以显著降低电对在石墨电极上的电化学反应阻抗。动电位测试结果发现Ti(Ⅲ)/Ti(Ⅳ)的平衡电位随温度上升发生正方向的偏移,可能是由于温度上升使得Ti在HCl溶液中的形态发生变化;交换电流也随温度上升而增加是由于温度上升有促进电极表面电化学反应的电荷传递。各种电化学测试结果显示TiCl3的HCl水溶液是一种有应用前景的液流电池负极电解液。

References

[1]  Xue F Q, Wang Y L, Wang W H, Wang X D. Investigation on the electrode process of the Mn(Ⅱ)/Mn(Ⅲ) couple in redox flow battery [J]. Electrochimica Acta, 2008(53): 6636-6642.
[2]  Sanz L, Palma J, Enrique García-Quismondo, Anderson M. The effect of chloride ion complexation on reversibility and redox potential of the Cu(Ⅱ)/Cu(Ⅰ) couple for use in redox flow batteries [J]. Journal of Power Sources, 2013(224): 278-284.
[3]  Sanz L, Lloyd D, Magdalena E, Palma J, Kontturi K. Description and performance of a novel aqueous all-copper redox flow battery [J]. Journal of Power Sources, 2014(268): 121-128.
[4]  Wen Y H, Zhang H M, Qian P, Zhou H T, Zhao P, Yi B L, Yang Y S. A study of the Fe(Ⅲ)/Fe(Ⅱ)-triethanolamine complex redox couple for redox flow battery application [J]. Electrochimica Acta, 2006(51): 3769-3775.
[5]  Hruska L W, Savinel R F. Investigation of factors affecting performance of the iron-redox battery [J]. Int J Electrochem SC, 1981, 128(1): 18-25.
[6]  Paulenova A, Creager S E, Navratil J D, Wei Y. Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions [J]. Journal of Power Sources, 2002(109): 431-438.
[7]  Piro N A, Robinson J R, Walsh P J, Schelter E J. The electrochemical behavior of cerium(Ⅲ/Ⅳ) complexes: thermodynamics, kinetics and applications in synthesis [J]. Coordination Chemistry Reviews, 2014(260): 21-36.
[8]  Leung P K, Ponce de León C, Low C T J, Walsh F C. Ce(Ⅲ)/Ce(Ⅳ) in methanesulfonic acid as the positive half-cell of a redox flow battery [J]. Electrochimica Acta, 2011(56): 2145-2153.
[9]  Xiong F J, Zhou D B, Xie Z P, Chen Y Y. A study of the Ce3+/Ce4+ redox couple in sulfamic acid for redox battery application [J]. Applied Energy, 2012(99): 291-296.
[10]  Fang B, Iwasa S, Wei Y, Arai T, Kumagai M. A study of the Ce(Ⅲ)/Ce(Ⅳ) redox couple for redox flow battery application [J]. Electrochimica Acta, 2002(47): 3971-3976.
[11]  Liu Y, Xia X, Liu H. Studies on cerium (Ce4 +/Ce3+)-vanadium (V2+/V3+) redox flow cell—cyclic voltammogram response of Ce4+/Ce3+ redox couple in H2SO4 solution [J]. Journal of Power Sources, 2004(130): 299-305.
[12]  Xie Z P, Xiong F J, Zhou D B. Study of the Ce3+/Ce4+ redox couple in mixed-acid media (CH3SO3H and H2SO4) for redox flow battery application [J]. Energy & Fuels, 2011(25): 2399-2404.
[13]  Leung P K, Leon C P D, Walsh F C. The influence of operational parameters on the performance of an undivided zinc-cerium flow battery [J]. Electrochimica Acta, 2012(80): 7-14.
[14]  Xie Z P, Liu Q C, Chang Z W, Zhang X B. The developments and challenges of cerium half-cell in zinc-cerium redox flow battery for energy storage [J]. Electrochimica Acta, 2013(90): 695-704.
[15]  Han P X, Wang H B, Liu Z H, Chen X, Ma W, Yao J H, Zhu Y W. Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO+2 and V2+/V3+ redox couples for a vanadium redox flow battery [J]. Science Direct, 2011(49): 693-700.
[16]  Shinkle A A, Pomaville T J, Sleightholme A E S, Thompson, Monroe C W. Solvents and supporting electrolytes for vanadium acetylacetonate flow batteries [J]. Journal of Power Sources, 2014(248): 1299-1305.
[17]  Noel M, Anantharaman P N. A comparative study of electron-transfer kinetics of Ti4+/Ti3+ redox complexes on glassy carbon and mercury electrodes [J]. Electrodics and Electrobiology, 1987, 4(3): 349-357.
[18]  Lisitsyn Y A, Busugina N V. Electrochemical behavior of Ti(Ⅳ)/Ti(Ⅲ) redox couple on dropping mercury electrode in sulfuric acid aqueous and aqueous-organic media [J]. Russian Journal of General Chemistry, 2009, 79(7): 1413-1420.
[19]  Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X D, Guzik A A, Gordon R G, Aziz M J. A metal-free organic-inorganic aqueous flow battery [J]. Nature Letter, 2014, 505(12909): 195-200.
[20]  Liu Zonghao(刘宗浩), Zhang Huamin(张华民). The world's largest all-vanadium redox flow battery energy storage system for a wind farm [J]. Energy Storage Science and Technology, 2014, 3(1): 71-77.
[21]  Yang Zhenguo, Zhang Jianlu, Kinter-Meyer M C W, Lu Xiaochuan, Choi D, Lemmon J P, Liu Jun. Electrochemical energy storage for green grid [J]. Chemical Reviews, 2011(111): 3577-3613.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133