Dunn S. Hydrogen futures: toward a sustainable energy system [J]. International Journal of Hydrogen Energy, 2002, 27 (3): 235-264.
[2]
Choudhary T V, Sivadinarayana C, Goodman D W. Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon reforming and catalytic dehydrogenation of ammonia [J]. Chemical Engineering Journal, 2003, 93 (1): 69-80.
[3]
Amphlett J C, Evans M J, Jones R A, et al. Hydrogen production by the catalytic steam reforming of methanol (Ⅰ): The thermodynamics [J]. The Canadian Journal of Chemical Engineering, 1981, 59 (6): 720-727.
[4]
Lin Y M, Rei M H. Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor [J]. Catalysis Today, 2001, 67 (1): 77-84.
[5]
Sohn J M, Chang Byun Y, Yeon Cho J, et al. Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol [J]. International Journal of Hydrogen Energy, 2007, 32 (18): 5103-5108.
[6]
Tan ?, Ma?alac? E, ?nsan Z I, et al. Design of a methane processing system producing high-purity hydrogen [J]. International Journal of Hydrogen Energy, 2008, 33 (20): 5516-5526.
[7]
Metkemeijer R, Achard P. Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell [J]. International Journal of Hydrogen Energy, 1994, 19 (6): 535-542.
[8]
Zhang J, Xu H, Li W. High-purity COx-free H2 generation from NH3 via the ultra permeable and highly selective Pd membranes [J]. Journal of Membrane Science, 2006, 277 (1): 85-93.
[9]
di Carlo A, Dell'Era A, Del Prete Z. 3D simulation of hydrogen production by ammonia decomposition in a catalytic membrane reactor [J]. International Journal of Hydrogen Energy, 2011, 36 (18): 11815-11824.
[10]
Li G, Kanezashi M, Yoshioka T, et al. Ammonia decomposition in catalytic membrane reactors: simulation and experimental studies [J]. AIChE Journal, 2013, 59 (1): 168-179.
[11]
Ganley J C, Seebauer E G, Masel R I. Development of a microreactor for the production of hydrogen from ammonia [J]. Journal of Power Sources, 2004, 137 (1): 53-61.
[12]
Alagharu V, Palanki S, West K N. Analysis of ammonia decomposition reactor to generate hydrogen for fuel cell applications [J]. Journal of Power Sources, 2010, 195 (3): 829-833.
[13]
Lu Zexiang (卢泽湘), Ji Shengfu (季生福), Liu Hui (刘辉), Li Chengyue (李成岳). Indirect thermal coupling between methane combustion and dodecane dehydrogenation reactions [J]. CIESC Journal (化工学报), 2011, 62 (11): 3130-3135.
[14]
Frauhammer J, Eigenberger G, Hippel L V, et al. A new reactor concept for endothermic high-temperature reactions [J]. Chemical Engineering Science, 1999, 54 (15): 3661-3670.
[15]
Zanfir M, Gavriilidis A. Catalytic combustion assisted methane steam reforming in a catalytic plate reactor [J]. Chemical Engineering Science, 2003, 58 (17): 3947-3960.
[16]
Chen Gantang (陈甘棠). Chemical Reaction Engineering (化学反应工程) [M]. Beijing: Chemical Industry Press, 2007: 186-203.
[17]
Ergun S. Mass-transfer rate in packed columns—its analogy to pressure loss [J]. Chemical Engineering Progress, 1952, 48 (5): 227-236.
[18]
Chellappa A S, Fischer C M, Thomson W J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications [J]. Applied Catalysis A: General, 2002, 227 (1): 231-240.
[19]
Schefer R W. Catalyzed combustion of H2/air mixtures in a flat plate boundary layer (Ⅱ): Numerical model [J]. Combustion and Flame, 1982, 45: 171-190.
[20]
Skelland A H P. Diffusional Mass Transfer [M]. New York: Wiley, 1974: 253-255.
[21]
Poling B E, Prausnitz J M, O'connell J P. The Properties of Gases and Liquids [M]. New York: McGraw-Hill, 2001: 647.
[22]
Chen C Y, Hawkins G A, Solberg H L. Heat transfer in annuli [J]. Transactions of American Society of Mechanical Engineers, 1946, 68: 99-106.
[23]
Li C H, Finlayson B A. Heat transfer in packed beds—a reevaluation [J]. Chemical Engineering Science, 1977, 32 (9): 1055-1066.