Collard F X, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin [J]. Renewable Sustainable Energy Rev., 2014, 38: 594-608.
[2]
Bulushev D A, Ross J R H. Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review [J]. Catal. Today, 2011, 171: 1-13.
[3]
Lasa H D, Salaices E, Mazumder J, Lucky R. Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics [J]. Chem. Rev., 2011, 111: 5404-5433.
[4]
Werpy T, Petersen G. Top value added chemicals from biomass volume (Ⅰ): Results of screening for potential candidates from sugars and synthesis gas [R]. OakRidge: US Department of Energy, 2004.
[5]
Karinen R, Vilonen K, Niemelfi M. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethyl furfural [J]. ChemSusChem, 2011, 4: 1002-1016.
[6]
Putten R J V, Waal J C V D, Jong E D, Rasrendra C B, Heeres H J, Vries J G D. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources [J]. Chem. Rev., 2013, 113: 1499-1597.
[7]
Huber G W, Chheda J N, Barrett C J, Dumesic J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates [J]. Science, 2005, 308: 1446-1450.
[8]
Huber G W, Dumesic J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery [J]. Catal. Today, 2006, 111: 119-132.
[9]
West R M, Liu Z Y, Peter M, Gfirtner C A, Dumesic J A. Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system [J]. J. Mol. Catal. A: Chem., 2008, 296: 18-27.
[10]
Olcay H, Subrahmanyam A V, Xing R, Lajoie J, Dumesic J A, Huber G W. Production of renewable petroleum refinery diesel and jet fuel feedstocks from hemicellulose sugar streams [J]. Energy Environ. Sci., 2013, 6: 205-216.
[11]
West R M, Liu Z Y, Peter M, Dumesic J A. Liquid alkanes with targeted molecular weights from biomass-derived carbohydrates [J]. ChemSusChem., 2008, 1: 417-424.
[12]
Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone [J]. ChemSusChem, 2013, 6: 1149-1152.
[13]
Lange J P, Heide E V D, Buijtenen J V, Price R. Furfural—a promising platform for lignocellulosic biofuels [J]. ChemSusChem, 2012, 5: 150-166.
[14]
Huang Y B, Yang Z, Dai J J, Guo Q X, Fu Y. Production of high quality fuels from lignocellulose-derived chemicals: a convenient C—C bond formation of furfural, 5-methylfurfural and aromatic aldehyde [J]. RSC Adv., 2012, 2: 11211-11214.
[15]
Liu D, Chen E Y X. Diesel and alkane fuels from biomass by organocatalysis and metal-acid tandem catalysis [J]. ChemSusChem, 2013, 6: 2236-2239.
[16]
Yang J, Li N, Li G, Wang W, Wang A, Wang X, Cong Y, Zhang T. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose [J]. Chem. Commun., 2014, 50: 2572-2574.
[17]
James O O, Maity S, Usman L A, Ajanaku K O, Ajani O O, Siyanbola T O, Sahu S, Chaubey R. Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural [J]. Energy Environ. Sci., 2010, 3: 1833-1850.
[18]
Sutton A D, Waldie F D, Wu R, Schlaf M, Pete Silks L A, Gordon J C. The hydrodeoxygenation of bioderived furans into alkanes [J]. Nat. Chem., 2013, 5: 428-432.
[19]
Liu D, Chen E Y X. Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel [J]. ACS Catal., 2014, 4: 1302-1310.
[20]
Zeitsch K J. Furfural Processes in the Chemistry and Technology of Furfural and Its Many By-products, Sugar Series[M]. Dordrecht: Elsevier Science, 2000: 36-74.
[21]
Corma A, Torre O D L, Renz M, Villandier N. Production of high-quality diesel from biomass waste products [J]. Angew. Chem. Int. Ed., 2011, 50: 2375-2378.
[22]
Corma A, Torre O D L, Renz M. High-quality diesel from hexose-and pentose-derived biomass platform molecules [J]. ChemSusChem, 2011, 4: 1574-1577.
[23]
Corma A, Torre O D L, Renz M. Production of high quality diesel from cellulose and hemicellulose by the sylvan process: catalysts and process variables [J]. Energy Environ. Sci., 2012, 5: 6328-6344.
[24]
Li S, Li N, Li G, Wang A, Cong Y, Wang X, Zhang T. Synthesis of diesel range alkanes with 2-methylfuran and mesityl oxide from lignocellulose [J]. Catal. Today, 2014, 234: 91-99.
[25]
Li G, Li N, Wang Z, Li C, Wang A, Wang X, Cong Y, Zhang T. Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose [J]. ChemSusChem, 2012, 5: 1958-1966.
[26]
Li G, Li N, Yang J, Wang A, Wang X, Cong Y, Zhang T. Synthesis of renewable diesel with the 2-methylfuran, butanal and acetone derived from lignocellulose [J]. Bioresour. Technol., 2013, 134: 66-72.
[27]
Li G, Li N, Li S, Wang A, Cong Y, Wang X, Zhang T. Synthesis of renewable diesel with hydroxyacetone and 2-methyl-furan [J]. Chem. Commun., 2013, 49: 5727-5729.
[28]
Sitthisa S, Resasco D E. Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni [J]. Catal. Lett., 2011, 141: 784-791.
[29]
Sitthisa S, An W, Resasco D E. Selective conversion of furfural to methylfuran over silica-supported Ni-Fe bimetallic catalysts [J]. J. Catal., 2011, 284: 90-101
[30]
Stevens J G, Bourne R A, Twigg M V, Poliakoff M. Real-time product switching using a twin catalyst system for the hydrogenation of furfural in supercritical CO2 [J]. Angew. Chem. Int. Ed., 2010, 49: 8856-8859.
[31]
Haan R J, Lange J P. Gasoline composition and process for the preparation of alkylfurfuryl ether [P]: WO, 2009077606. 2009-06-25.
[32]
Yu W J, Tang Y, Mo L Y, Chen P, Lou H, Zheng X M. One-step hydrogenation-esterification of furfural and acetic acid over bifunctional Pd catalysts for bio-oil upgrading [J]. Bioresour. Technol., 2011, 102: 8241-8246.
[33]
Mallesham B, Sudarsanam P, Raju G, Reddy B M. Design of highly effcient Mo and W-promoted SnO2 solid acids for heterogeneous catalysis: acetalization of bio-glycerol [J]. Green Chem., 2013, 15: 478-489.
[34]
Melero J A, Vicente G, Morales G, Paniagua M, Bustamante J. Oxygenated compounds derived from glycerol for biodiesel formulation: infiuence on EN 14214 quality parameters [J]. Fuel, 2010, 89: 2011-2018.
[35]
Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates [J]. Nature, 2007, 447: 982-986.
[36]
Thananatthanachon T, Rauchfuss T B. Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent [J]. Angew. Chem. Int. Ed., 2010, 49: 6616-6618.
[37]
Gruter G J M, Dautzenberg F. Method for the synthesis of 5-hydroxymethylfurfural ethers and their use [P]: US, 2011082304. 2011-04-07.
[38]
Che P, Lu F, Zhang J, Huang Y, Nie X, Gao J, Xu J. Catalytic selective etherification of hydroxyl groups in 5-hydro-xymethyl-furfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production [J]. Bioresour. Technol., 2012, 119: 433-436.
[39]
Balakrishnan M, Sacia E R, Bell A T. Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl) furfurals and 2,5-bis(alkoxymethyl) furans as potential bio-diesel candidates [J]. Green Chem., 2012, 14: 1626-1634.
[40]
Lanzafame P, Temi D M, Perathoner S, Centi G, Macario A, Aloise A, Giordano G. Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts [J]. Catal. Today, 2011, 175: 435-441.
[41]
Wang H, Wang Y, Deng T, Chen C, Zhu Y, Hou X. Carbocatalyst in biorefinery: selective etherification of 5-hydroxymethylfurfural to 5,5’(oxy-bis(methylene))bis-2-furfural over graphene oxide [J]. Catal. Commun., 2015, 59: 127-130.
[42]
Mascal M, Nikitin E B. Direct, high-yield conversion of cellulose into biofuel [J]. Angew. Chem. Int. Ed., 2008, 47: 7924-7926.
[43]
Liu B, Zhang Z, Deng K. Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst [J]. Ind. Eng. Chem. Res., 2012, 51: 15331-15336.
[44]
Yang Y, Abu-Omar M M, Hu C W. Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate [J]. Appl. Energy, 2012, 99: 80-84.
[45]
Ras E J, Maisuls S, Haesakkers P, Gruter G J, Rothenberg G. Selective hydrogenation of 5-ethoxymethylfurfural over alumina-supported heterogeneous catalysts [J]. Adv. Synth. Catal., 2009, 351: 3175-3185.
[46]
Krystof M, Perez-Sanchez M, de Maria P D. Lipase-catalyzed (trans)esterification of 5-hydroxymethyl furfural and separation from HMF esters using deep-eutectic solvents [J]. ChemSusChem, 2013, 6: 630-634.
[47]
Rackemann D W, Doherty W O S. The conversion of lignocellulosics to levulinic acid [J]. Biofuels, Bioprod. Bioref., 2011, 5: 198-214.
[48]
Bozell J J. Connecting biomass and petroleum processing with a chemical bridge [J]. Science, 2010, 329: 522-523.
[49]
Wright W R H, Palkovits R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone [J]. ChemSusChem, 2012, 5: 1657-1667.
[50]
Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels [J]. Science, 2010, 327: 1110-1114.
[51]
Bond J Q, Wang D, Alonso D M, Dumesic J A. Interconversion between γ-valerolactone and pentenoic acid combined with decarboxylation to form butene over silica/alumina [J]. J. Catal., 2011, 281: 290-299.
[52]
Sen S M, Gurbuz E I, Wettstein S G, Alonso D M, Dumesic J A, Maravelias C T. Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass: process synthesis and technoeconomic evaluation [J]. Green Chem., 2012, 14: 3289-3294.
[53]
Serrano-Ruiz J C, Braden D J, West R M, Dumesic J A. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen [J]. Appl. Catal., B, 2010, 100: 184-189.
[54]
Serrano-Ruiz J C, Wang D, Dumesic J A. Catalytic upgrading of levulinic acid to 5-nonanone [J]. Green Chem., 2010, 12: 574-577.
[55]
Alonso D M, Bond J Q, Serrano-Ruiz J C, Dumesic J A. Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes [J]. Green Chem., 2010, 12: 992-999.
[56]
Mascal M, Dutta S, Gandarias I. Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7—C10 gasoline-like hydrocarbons [J]. Angew. Chem. Int. Ed., 2014, 53: 1854-1857.
[57]
Xin J, Zhang S, Yan D, Ayodele O, Lu X, Wang J. Formation of C—C bonds for the production of bio-alkanes under mild conditions [J]. Green Chem., 2014, 16: 3589-3595.
[58]
Schwartz T J, van Heiningen A R P, Wheeler M C. Energy densification of levulinic acid by thermal deoxygenation [J]. Green Chem., 2010, 12: 1353-1356.
[59]
Case P A, van Heiningen A R P, Wheeler M C. Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures [J]. Green Chem., 2012, 14: 85-89.
[60]
Horváth I T, Mehdi H, Fábos V, Boda L, Mika LT. g-Valerolactone—a sustainable liquid for energy and carbon-based chemicals [J]. Green Chem., 2008, 10: 238-242.
[61]
Bruno T J, Wolk A, Naydich A. Composition-explicit distillation curves for mixtures of gasoline and diesel fuel with γ-valerolactone [J]. Energ Fuel, 2010, 24: 2758-2767.
[62]
Serrano-Ruiz J C, West R M, Durnesic J A. Catalytic conversion of renewable biomass resources to fuels and chemicals [J]. Annu. Rev. Chem. Biomol., 2010, 1: 79-110
[63]
Bui L, Luo H, Gunther W R, Roman-Leshkov Y. Domino reaction catalyzed by zeolites with Br?nsted and Lewis acid sites for the production of γ-valerolactone from furfural [J]. Angew. Chem. Int. Ed., 2013, 52: 8022-8025.
[64]
Heeres H, Handana R, Chunai D, Rasrendra C B, Girisuta B, Heeres H J. Combined dehydration/(transfer)-hydrogenation of C6-sugars (D-glucose and D-fructose) to γ-valerolactone using ruthenium catalysts [J]. Green Chem., 2009, 11: 1247-1255.
[65]
Pan T, Deng J, Xu Q, Xu Y, Guo Q X, Fu Y. Catalytic conversion of biomass-derived levulinic acid to valerate esters as oxygenated fuels using supported ruthenium catalysts [J]. Green Chem., 2013, 15: 2967-2974.
[66]
Chan-Thaw C E, Marelli M, Psaro R, Ravasio N, Zaccheria F. New generation biofuels: γ-valerolactone into valeric esters in one pot [J]. RSC Adv., 2013, 3: 1302-1306
[67]
Lange J P, Price R, Ayoub P M, Louis J, Petrus L, Clarke L, Gosselink H. Valeric biofuels: a platform of cellulosic transportation fuels [J]. Angew. Chem., Int. Ed., 2010, 49: 4479-4483.
[68]
Geilen F M A, Engendahl B, Harwardt A, Marquardt W, Klankermayer J, Leitner W. Selective and flexible transformation of biomass-derived platform chemicals by a multifunctional catalytic system [J]. Angew. Chem. Int. Ed., 2010, 49: 5510-5514.
[69]
Upare P P, Lee J M, Hwang Y K, Hwang D W, Lee J H, Halligudi S B, Hwang J S, Chang J S. Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts [J]. ChemSusChem, 2011, 4: 1749-1752.
[70]
Du X L, Bi Q Y, Liu Y M, Cao Y, He H Y, Fan K N. Tunable copper-catalyzed chemoselective hydrogenolysis of biomass-derived γ-valerolactone into 1,4-pentanediol or 2-methyltetrahydrofuran [J]. Green Chem., 2012, 14: 935-939.
[71]
Peng L, Lin L, Li H, Yang Q. Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts [J]. Appl. Energy, 2011, 88: 4590-4596.
[72]
Gurbuz E I, Alonso D M, Bond J Q, Dumesic J A. Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels [J]. ChemSusChem, 2011, 4: 357-361.
[73]
Hu X, Li C Z. Levulinic esters from the acid-catalysed reactions of sugars and alcohols as part of a bio-refinery [J]. Green Chem., 2011, 13: 1676-1679.
[74]
Tominaga K, Mori A, Fukushima Y, Shimada S, Sato K. Mixed-acid systems for the catalytic synthesis of methyl levulinate from cellulose [J]. Green Chem., 2011, 13: 810-812.
[75]
Mao R L V, Zhao Q, Dima G, Petraccone D. New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction [J]. Catal. Lett., 2011, 141: 271-276.
[76]
Hayes D J. An examination of biorefining processes, catalysts and challenges [J]. Catal. Today, 2009, 145: 138-151.
[77]
Klass D L. Biomass for Renewable Energy, Fuels and Chemicals[M]. San Diego: Academic Press, 1998.
[78]
Yan N, Zhao C, Luo C, Dyson P J, Liu H, Kou Y. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst [J]. J. Am. Chem. Soc., 2006, 128: 8714-8715.
[79]
Huber G W, Cortright R D, Dumesic J A. Renewable alkanes by aqueous-phase reforming of biomass-derived oxygenates [J]. Angew. Chem. Int. Ed., 2004, 43: 1549-1551.
[80]
Kirilin A V, Tokarev A V, Murzina E V, Kustov L M, Mikkola J P, Murzin D Y. Reaction products and transformations of intermediates in the aqueous-phase reforming of sorbitol [J]. ChemSusChem, 2010, 3: 708-718.
[81]
Beeck B O D, Dusselier M, Geboers J, Holsbeek J, Morre E, Oswald S, Giebeler L, Sels B F. Direct catalytic conversion of cellulose to liquid straight-chain alkanes [J]. Energy Environ. Sci., 2015, 8: 230-240.
[82]
Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gartner C A, Dumesic J A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes [J]. Science, 2008, 322: 417-421.