Zhang Y, Chen H, Chen C C, et al. Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution [J]. Industrial & Engineering Chemistry Research, 2009, 48(20): 9233-9246.
[2]
Migliardini F, de Luca V, Carginale V, Rossi M, Corbo P, Supuran C T, Capasso C. Biomimetic CO2 capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam [J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29(1): 146-150.
[3]
Yan M, Liu Z, Lu D, Liu Z. Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature [J]. Biomacromolecules, 2007, 8(2): 560-565.
[4]
Roy A, Taraphder S. Transition path sampling study of the conformational fluctuation of His-64 in human carbonic anhydrase Ⅱ [J]. The Journal of Physical Chemistry B, 2009, 113 (37): 12555-12564.
[5]
Maupin C M, McKenna R, Silverman D N, Voth G A. Elucidation of the proton transport mechanism in human carbonic anhydrase Ⅱ [J]. Journal of the American Chemical Society, 2009, 131(22): 7598-7608.
[6]
Roy A, Taraphder S. Identification of proton-transfer pathways in human carbonic anhydrase Ⅱ [J]. The Journal of Physical Chemistry B, 2007, 111(35): 10563-10576.
[7]
Pierre A C. Enzymatic carbon dioxide capture [J]. International Scholarly Research Notices, 2012, 2012. doi:10.5402/2012/753687
[8]
Yong J K, Stevens G W, Caruso F, Kentish S E. The use of carbonic anhydrase to accelerate carbon dioxide capture processes [J]. Journal of Chemical Technology and Biotechnology, 2015, 90(1): 3-10.
[9]
Guo Y, Zhao C, Li C, Wu Y. CO2 sorption and reaction kinetic performance of K2CO3/AC in low temperature and CO2 concentration [J]. Chemical Engineering Journal, 2015, 260: 596-604.
[10]
MacKerell A D, Feig M, Brooks C L. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations [J]. Journal of Computational Chemistry, 2004, 25(11): 1400-1415.
[11]
MacKerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins [J]. The Journal of Physical Chemistry B, 1998, 102(18): 3586-3616.
[12]
Aaron D, Tsouris C. Separation of CO2 from flue gas: a review [J]. Separation Science and Technology, 2005, 40(1/3): 321-348.
[13]
Monteiro J G-S, Knuutila H, Penders-van Elk N J, Versteeg G, Svendsen H. Kinetics of CO2 absorption by aqueous N, N-diethylethanol-amine solutions: literature review, experimental results and modelling [J]. Chemical Engineering Science, 2015, 127: 1-12.
[14]
Vinoba M, Bhagiyalakshmi M, Grace A N, et al. Carbonic anhydrase promotes the absorption rate of CO2 in post-combustion processes [J]. The Journal of Physical Chemistry B, 2013, 117 (18): 5683-5690.
[15]
Savile C K, Lalonde J J. Biotechnology for the acceleration of carbon dioxide capture and sequestration [J]. Current Opinion in Biotechnology, 2011, 22(6): 818-823.
[16]
Zhang S, Zhang Z, Lu Y, Rostam-Abadi M, Jones A. Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture [J]. Bioresource Technology, 2011, 102(22): 10194-10201.
[17]
Krishnamurthy V M, Kaufman G K, Urbach A R, et al. Carbonic anhydrase as a model for biophysical and physical-organic studies of proteins and protein-ligand binding [J]. Chemical Reviews, 2008, 108(3): 946-1051.
[18]
Maupin C M, Castillo N, Taraphder S, et al. Chemical rescue of enzymes: proton transfer in mutants of human carbonic anhydrase Ⅱ [J]. Journal of the American Chemical Society, 2011, 133(16): 6223-6234.
[19]
Kaila V R I, Hummer G. Energetics and dynamics of proton transfer reactions along short water wires [J]. Physical Chemistry Chemical Physics, 2011, 13(29): 13207-13215.
[20]
Hakkim V, Subramanian V. Role of second coordination sphere amino acid residues on the proton transfer mechanism of human carbonic anhydrase Ⅱ (HCA Ⅱ) [J]. The Journal of Physical Chemistry A, 2010, 114(30): 7952-7959.
[21]
Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L. Comparison of simple potential functions for simulating liquid water [J]. The Journal of Chemical Physics, 1983, 79 (2): 926-935.
[22]
Straub J E, Karplus M. Molecular dynamics study of the photodissociation of carbon monoxide from myoglobin: ligand dynamics in the first 10 ps [J]. Chemical Physics, 1991, 158 (2): 221-248.
[23]
Stote R H, Karplus M, Zinc binding in proteins and solution: a simple but accurate nonbonded representation [J]. Proteins: Structure, Function, and Bioinformatics, 1995, 23(1): 12-31.
[24]
Hakansson K, Carlsson M, Svensson L A, Liljas A. Structure of native and apo carbonic anhydrase Ⅱ and structure of some of its anion-ligand complexes [J]. J. Mol. Biol., 1992, 227(4): 1192-204.
[25]
Phillips J C, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD [J]. Journal of Computational Chemistry, 2005, 26(16): 1781-1802.
[26]
Paterlini M G, Ferguson D M. Constant temperature simulations using the Langevin equation with velocity Verlet integration [J]. Chemical Physics, 1998, 236(1): 243-252.
[27]
Feller S E, Zhang Y, Pastor R W, Brooks B R. Constant pressure molecular dynamics simulation: the Langevin piston method [J]. The Journal of Chemical Physics, 1995, 103(11): 4613-4621.
[28]
Darden T, York D, Pedersen L. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems [J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
[29]
Berendsen H J. Interaction models for water in relation to protein hydration//Postma J P, van Gunsteren W F, Hermans J. Intermolecular Forces [M]. Berlin: Springer Netherlands, 1981: 331-342.
[30]
Perrakis A, Morris R, Lamzin V S. Automated protein model building combined with iterative structure refinement [J]. Nature Structural & Molecular Biology, 1999, 6(5): 458-463.