全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化工学报  2015 

基于证据合成的高斯过程回归多模型软测量方法

DOI: 10.11949/j.issn.0438-1157.20150492, PP. 4555-4564

Keywords: 软测量,多模型,高斯过程回归,证据理论,仪表,发酵,算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对生物发酵过程,提出了一种基于证据理论的高斯过程回归多模型软测量方法,其中多模型融合策略同时考虑了数据聚类特性和软测量子模型统计特性。首先,对聚类后的各子类建立高斯过程回归子模型;然后,基于聚类隶属度函数和高斯过程回归子模型后验概率分别设计子模型权值,并利用证据合成规则将两类权值进行证据合成得到融合权值;最后,将该融合权值作为加权因子对子模型进行融合。通过青霉素发酵过程仿真数据和红霉素发酵过程工业数据研究表明,相比单一模型和传统多模型高斯过程回归软测量方法,本文所提方法具有较高的预测精度和较小的预测不确定度。

References

[1]  Khatibisepehr S, Huang B, Xu F, Espejo A. A Bayesian approach to design of adaptive multi-model inferential sensors with application in oil sand industry [J]. Journal of Process Control, 2012, 22 (10): 1913-1929.
[2]  Wang Huazhong (王华忠). Gaussian process and its application to soft-sensor modeling [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2007, 58 (11): 2840-2845.
[3]  He Zhikun (何志昆), Liu Guangbin (刘光斌), Zhao Xijing (赵曦晶), Wang Minghao (王明昊). Overview of Gaussian process regression [J]. Control and Decision (控制与决策), 2013, 28 (8): 1121-1129.
[4]  Lei Yu (雷瑜), Yang Huizhong (杨慧中). Combination model soft sensor based on Gaussian process and Bayesian committee machine [J]. CIESC Journal (化工学报), 2013, 64 (12): 4434-4438.
[5]  Li X, Su H, Chu J. Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine [J]. Chinese Journal of Chemical Engineering, 2009, 17 (1): 95-99.
[6]  Rasmussen C E. Gaussian Processes for Machine Learning [M]. Cambridge: The MIT Press, 2006:16-18.
[7]  Sha Dingguo (沙定国). Error Analysis and Measurement Uncertainty Assessment (误差分析与测量误差评定) [M]. Beijing: China Metrology Press, 2003:218.
[8]  Murphy C K. Combining belief functions when evidence conflicts [J]. Decision Support Systems, 2000, 29 (1): 1-9.
[9]  Li X, Dezert J, Smarandache F, Huang X. Evidence supporting measure of similarity for reducing the complexity in information fusion [J]. Information Sciences, 2011, 181 (10): 1818-1835.
[10]  Su Z, Wang P, Shen J, Yu X, Lv Z, Lu L. Multi-model strategy based evidential soft sensor model for predicting evaluation of variables with uncertainty [J]. Applied Soft Computing, 2011, 11 (2): 2595-2610.
[11]  Birol G, ündey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production [J]. Computers & Chemical Engineering, 2002, 26 (11): 1553-1565.
[12]  Xiong Weili (熊伟丽), Wang Xiao (王肖), Chen Minfang (陈敏芳), Xu Baoguo (徐保国). Modeling for penicillin fermentation process based on weighted LS-SVM [J]. CIESC Journal (化工学报), 2012, 63 (9): 2913-2919.
[13]  He Xiaoran (贺晓冉), Chen Chen (陈宸), Kim Kwang Sok (金光石), Xiong Zhihua (熊智华). Model simulation of fed-batch penicillin fermentation and optimization of substrate federate [J]. CIESC Journal (化工学报), 2012, 63 (9): 2831-2835.
[14]  Yang Xiaomei (杨小梅), Liu Wenqi (刘文琦), Yang Jun (杨俊). LSSVM modeling for fermentation process based on dividing stages [J]. CIESC Journal (化工学报), 2013, 64 (9): 3262-3269.
[15]  Li Xi (李喜). Research and soft sensing applications of partial least-squares regression [D]. Dalian: Dalian University of Technology, 2007.
[16]  Dai X, Wang W, Ding Y, Sun Z. “Assumed inherent sensor” inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process [J]. Computers & Chemical Engineering, 2006, 30: 1203-1225.
[17]  Liu G, Zhou D, Xu H, Mei C. Model optimization of SVM for a fermentation soft sensor [J]. Expert Systems with Applications, 2010, 37 (4): 2708-2713.
[18]  Wang Bo (王博), Sun Yukun (孙玉坤), Ji Xiaofu (嵇小辅), Huang Yonghong (黄永红), Huang Li (黄丽). Soft-sensor modeling for lysine fermentation processes based on PSO-SVM inversion [J]. CIESC Journal (化工学报), 2012, 63 (9): 3000-3007.
[19]  Li Lijuan (李丽娟), Song Kun (宋坤), Zhao Yingkai (赵英凯). Modeling of ARA fermentation based on affinity propagation clustering [J]. CIESC Journal (化工学报), 2011, 62 (8): 2116-2121.
[20]  Xu Haixia (徐海霞), Liu Guohai (刘国海), Zhou Dawei (周大为), Mei Congli (梅从立). Soft sensor modeling based on modified kernel fuzzy clustering algorithm [J]. Chinese Journal of Scientific Instrument (仪器仪表学报), 2009, 30 (10): 2226-2231.
[21]  Sang Haifeng (桑海峰), Wang Fuli (王福利), He Dakuo (何大阔), Zhang Dapeng (张大鹏), He Jianyong (何建勇). Soft sensors of biomass concentration in nosiheptied fermentation process based on multiple support vector machines [J]. Journal of System Simulation (系统仿真学报), 2006, 18 (7): 1983-1986.
[22]  Zhong Weimin (钟伟民), Li Jie (李杰), Cheng Hui (程辉), Kong Xiangdong (孔祥东), Qian Feng (钱锋). A soft sensor multi-modeling for furnace temperature of gasifier based FCM clustering [J]. CIESC Journal (化工学报), 2013, 63 (12): 3951-3955.
[23]  Cong Qiumei (丛秋梅), Yuan Mingzhe (苑明哲), Chai Tianyou (柴天佑), Wang Hong (王宏). Online modeling for multi-model by adjusting the centers of operating ranges [J]. Control Theory & Applications (控制理论与应用), 2013, 30 (6): 773-780.
[24]  Suo Xingyi (索幸仪), Shi Hongbo (侍洪波). Soft sensor modeling of sewage disposal process based on multi-model fuzzy kernel clustering method [J]. Journal of East China University of Science and Technology: Natural Science Edition (华东理工大学学报: 自然科学版), 2010, 36 (5): 732-736.
[25]  Jin X, Wang S, Huang B, Forbes F. Multiple model based LPV soft sensor development with irregular/missing process output measurement [J]. Control Engineering Practice, 2012, 20 (2): 165-172.
[26]  Wang Zhenlei (王振雷), Tang Ku (唐苦), Wang Xin (王昕). A multi-model soft sensing method based on D-S and ARIMA model [J]. Control and Decision (控制与决策), 2014, 29 (7): 1160-1166.
[27]  Tang Ku (唐苦), Wang Xin (王昕), Wang Zhenlei (王振雷). Multi-model soft sensor based on Dempster-Shafer rule [J]. Control Theory & Applications (控制理论与应用), 2014, 31 (5): 632-637.
[28]  Domlan E, Huang B, Xu F, Espejo A. A decoupled multiple model approach for soft sensors design [J]. Control Engineering Practice, 2011, 19 (2): 126-134.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133