全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
核农学报  2014 

植物类病变突变体及其信号传导途径

DOI: 10.11869/j.issn.100-8551.2014.10.1811, PP. 1811-1818

Keywords: 类病变,超敏反应,细胞程序性死亡,信号传导

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物类病变突变体是研究细胞程序性死亡和防卫反应的理想材料.越来越多的研究表明,类病变突变体易受环境因子和遗传背景的影响.本文综述了植物类病变突变体的发生机制及相关的信号传导途径,以期对植物超敏反应的研究提供有益的借鉴.

References

[1]  Johal G S, Hulbert S H, Briggs S P. Disease lesion mimics of maize: a model for cell death in plants[J]. Bioessays, 1995, 17(8): 685-692
[2]  Lorrain S, Vailleau F, Balague C, Roby D. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants [J]. Trends in Plant Science, 2003, 8(6): 263-271
[3]  Yamanouchi U, Yano M, Lin H X, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceeding of the National Academy of the United States of America, 2002, 99(11): 7530-7535
[4]  Zeng L R, Qu S H, Bordeos A, Yang C W, Baraoidan M, Yan H Y, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf 11 , a negative regulator of plant cell death and defense, encodes a u-Box/armadillo repeat protein endowed with E3 Ubiquitin ligase activity[J]. The Plant Cell, 2004, 16(10): 2795-2808
[5]  Qiao Y L, Jiang W Z, Lee J H, Park B B, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z,Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit u1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa)[J]. New Phytologist, 2010, 185(1): 258-274
[6]  Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice[J]. Molecular Breeding, 2012, 30(2): 939-949
[7]  Mittler R, Rizhsky L. Transgene-induced lesion mimic[J]. Plant Molecular Biology, 2000, 44(3): 335-344
[8]  刘道峰, 程祝宽, 刘国庆, 刘国振, 王赟, 赵显峰, 朱立煌. 水稻类病变突变体 lmi 的鉴定及其基因定位[J]. 科学通报, 2003, 48(8): 831-835
[9]  王建军, 张礼霞, 王林友, 张利华, 竺朝娜, 何祖华, 金庆生, 范宏环, 于新. 水稻类病变突变体对光照和温度的诱导反应[J]. 中国农业科学, 2010, 43(10): 2039-2044
[10]  Genoud T, Millar A J, Nishizawa N, Kay S A, Schfer E, Nagatani A, Chua N H. An arabidopsis mutant hypersensitive to red and far-Red light signals[J]. The Plant Cell, 1998, 10(6): 889-904
[11]  Gray J, Janick-Buckner D, Buckner B, Close P S, Johal G S. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts[J]. Plant Physiology, 2002, 130(4): 1894-1907
[12]  Mateo A, Mühlenbock P, Rustérucci C, Chang C C, Miszalski Z, Karpinska B, Parker J E, Mullineaux P M, Karpinski S. LESION SIMULATING DISEASE1 is required for acclimation to conditions that promote excess excitation energy[J]. Plant Physiology, 2004, 136(1): 2818-2830
[13]  MA J Y, CHEN S L, ZHANG J H, Dong Y J, Teng S. Identification and genetic mapping of a lesion mimic mutant in rice[J]. Rice Science, 2012, 19(1): 1-7
[14]  Huang X-Z, Li Y-S, Zhang X Y, Zuo J R, Yang S H. The Arabidopsis LSD1 gene plays an important role in the regulation of low temperature-dependent cell death[J]. New Phytologist, 2010, 187(2): 301-312
[15]  Yoshioka K, Kachroo P, Tsui F, Shah J,Klessig D F. Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis[J]. The Plant Journal, 2001, 26(4): 447-459
[16]  Jambunathan N, Siani J M, McNellis T W. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance[J]. The Plant Cell, 2001, 13(10): 2225-2240
[17]  Gou M Y, Su N, Zheng J, Huai J L, Wu G H, Zhao J F, He J G, Tang D Z, Yang S H, Wang G Y. An F-box gene,CPR30, functions as a negative regulator of the defense response in Arabidopsis[J]. The Plant Journal, 2009, 60(5): 757-770
[18]  Babu R, Jiang C J, Xu X, Kottapalli K R, Takatsuji H, Miyao A, Hirochika H, Kawasaki S. Isolation, fine mapping and expression profiling of a lesion mimic genotype, splNF4050-8 that confers blast resistance in rice[J]. Theoretical and Applied Genetics, 2011, 122(4): 831-854
[19]  Penning B W, Johal G S, McMullen M D. A major suppressor of cell death, slm1, modifies the expression of the maize (Zea mays L.) lesion mimic mutation les23[J]. Genome, 2004, 47(5): 961-969
[20]  Hu G, Richter T E, Hulbert S H, Pryor T. Disease lesion mimicry caused by mutations in the rust resistance gene rp1[J]. The Plant Cell, 1996, 8(8): 1367-1376
[21]  Shirano Y, Kachroo P, Shah J, Klessig D F. A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance[J]. The Plant Cell, 2002, 14(12): 3149-3162
[22]  Tang J Y, Zhu X D, Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C. Semi-dominant mutations in the CC-NB-LRR-type R gene,NLS1, lead to constitutive activation of defense responses in rice[J]. The Plant Journal, 2011, 66(6): 996-1007
[23]  Dietrich R A, Richberg M H, Schmidt R, Dean C, Dang J. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death[J]. Cell, 1997, 88(5): 685-694
[24]  Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants[J]. The Annual Review of Plant Biology, 2007, 58(1): 321-346
[25]  Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize[J]. The Plant Cell, 1998, 10(7): 1095-1105
[26]  Sun C H, Liu L C, Tang J Y, Lin A H, Zhang F T, Fang J, Zhang G F, Chu C C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice[J]. Journal of Genetics and Genomics, 2011, 38(1): 29-37
[27]  Víctor Q, Raquel S M, Rebeca G B, Andrea H, María R P, José L M. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in arabidopsis[J]. PLoS ONE, 2013, 8(1): e53378
[28]  Mou Z L, He Y K, Dai Y, Liu X F, Li J Y. Deficiency in fatty acid synthase leads to premature cell death and dramatic alterations in plant morphology[J]. The Plant Cell, 2000, 12(3): 405-417
[29]  Han C Y, Ren C M, Zhi T T, Zhou Z, Liu Y, Chen F, Peng W, Xie D X. Disruption of fumarylacetoacetate hydrolase causes spontaneous cell death under short-day condition in arabidopsis[J]. Plant Physiology, 2013, 162(4): 1956-1964
[30]  Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice[J]. The Journal of Biological Chemistry, 2010, 285(15): 11308-11313
[31]  Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Daelen R. The barley MLO gene: a novel control element of plant pathogen resistance[J]. Cell, 1997, 88 (5) : 695-705
[32]  Balague C, Lin B Q, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family[J]. The Plant Cell, 2003,15(2): 365-379
[33]  Thomma B P, Penninckx I A, Cammue B P, Cammune B. The complexity of disease signaling in Arabidopsis[J]. Current Opinion in Immunology, 2001, 13(1): 63-68
[34]  Vranova E, Inze D, Van B F. Signal transduction during oxidative stress[J]. Journal of Experimental Botany, 2002, 53(372): 1227-1236
[35]  Polle A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling: computer simulations as a step towards flux analysis[J]. Plant Physiology, 2001, 126(1): 445-462
[36]  Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Montagu M, Inze D, Camp W V. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco[J]. Proceeding of the National Academy of the United States of America, 1998, 95(10): 5818-5823
[37]  Klibenstein D J, Dietrich R A, Martin A C, Last R L. LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 1999, 12(11): 1022-1026
[38]  Li Y S, Chen L C, Mu J Y, Zuo J R. LESION SIMULATING DISEASE1 interacts with catalases to regulate hypersensitive cell death in arabidopsis[J]. Plant Physiology, 2013, 163(2): 1059-1070
[39]  Weymann K, Hunt M, Uknes S, Neuenschwander U, Lawton K,Steiner Y, Ryals J. Suppression and restoration of lesion formation in Arabidopsis lsd mutants[J]. The Plant Cell, 1995, 7(12): 2013-2022
[40]  Lu H, Salimian S, Gamelin E, Wang G Y, Fedorowski J, LaCourse W, Greenberg J T. Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis[J]. Plant Journal, 2009, 58(3): 401-412
[41]  Wildermuth, M C, Dewdney J, Wu G, Ausubel FM. Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature, 2001, 414(6863): 562-565
[42]  Lu H, Rate D N, Song J T, Greenberg J T. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response[J]. Plant Cell, 2003, 15(10): 2408-2420
[43]  Cao H, Glazebrook J, Clarke J D, Volko S, Dong X N. The arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats[J]. Cell, 1997, 88(1): 57-63
[44]  Yu D, Chen C, Chen Z. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. The Plant Cell, 2001, 13(7): 1527-1540
[45]  Pieterse C M J, Leon-Reyes A, S. Van der Ent, Saskia C M. Networking by small-molecule hormones in plant immunity[J]. Nature Chemical Biology, 2009, 5(5): 308-316
[46]  Fan W H, Dong X N. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in arabidopsis[J]. The Plantt Cell, 2002, 14(6):1377-1389
[47]  Penninckx I, Thomma B, Buchala A, Metraux J, Broekaert W. Concomitant activation of jasmonate and ethylene response pathways is require for induction of a plant defensin gene in Arabidopsis[J]. The Plan Cell, 1998, 10(12): 2103-2113
[48]  Guo H, Ecker JR. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor[J]. Cell, 2003, 115 (6): 667-677
[49]  Palmer R M J, Hickery M S, Charles I G, Moncada S, Bayliss M T. Induction of nitric-oxide synthase in human chondrocytes[J]. Biochemical and Biophysical Research Communications, 1993, 193(1): 398-405
[50]  Beckman J S, Beckman T W, Chen J, Marshall P A, Freeman B A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide[J]. Proceeding of the National Academy of the United States of America, 1990, 87(4): 1620-1624
[51]  Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J]. Proceeding of the National Academy of the United States of America, 2001, 98(23): 13454-13459
[52]  de Pinto M C, Tomassi F, de Gara L. Changes in the antioxidant systems as part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells[J]. Plant Physiology, 2002, 130(2): 698-708
[53]  Yamasaki H, Shimoji H, Ohshiro Y, Sakihama Y. Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria[J]. Nitric Oxide, 2001, 5(3): 261-270
[54]  Jorgensen J H. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley[J]. Euphytica, 1992, 63(1/2): 141-152

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133