全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

柠檬酸杆菌对U(Ⅵ)的去除效应及机理研究

DOI: 10.11869/j.issn.100-8551.2015.09.1774, PP. 1774-1781

Keywords: 柠檬酸杆菌,U(Ⅵ),去除效应,红外光谱,扫描电子显微镜-能量色散X射线光谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探索柠檬酸杆菌对U(Ⅵ)的去除效应及机理,考察了pH值、温度、U(Ⅵ)初始浓度等对该菌株去除U(Ⅵ)的影响,并运用红外光谱(FTIR)与扫描电子显微镜-能量色散X射线光谱(SEM-EDX)分析了柠檬酸杆菌与U(Ⅵ)作用后官能团、形貌及元素组成的变化。结果表明:当pH值7.0,温度30℃,U(Ⅵ)初始浓度10mg·L-1时,柠檬酸杆菌对其去除率可达到94.5%;当U(Ⅵ)初始浓度为30mg·L-1时,去除率也可达到92.1%。FTIR分析表明,柠檬酸杆菌中与U(Ⅵ)相互作用的基团主要包括-OH、-C=O、-PO43-、-NH2等基团。SEM-EDX结果表明,柠檬酸杆菌与U(Ⅵ)作用后细胞表面出现褶皱,不规则,大量片状晶体和颗粒物;Na、Mg、Ca元素含量均降低,新出现了P和U峰,且P:U:Ca为0.88%:0.69%:0.48%。综上所述,溶液pH值、温度、U(Ⅵ)初始浓度对柠檬酸杆菌去除U(Ⅵ)有明显影响;柠檬酸杆菌与U(Ⅵ)的作用机理较复杂,主要与细胞基团、无机离子与UO22+的交换作用及微生物的矿化作用有关,这为利用柠檬酸杆菌去除核素的研究提供了依据。

References

[1]  史建君. 放射性核素对生态环境的影响[J]. 核农学报, 2011, 25(2): 397-403
[2]  Sert S, Eral M. Uranium adsorption studies on aminopropyl modified mesoporous sorbent (NH2-MCM-41) using statistical design method[J]. Journal of Nuclear Materials, 2010, 406(3): 285-292
[3]  Environmental Protection Agency. National primary drinking water regulations: interim enhanced surface water treatment[J]. Federal Register: Rules and Regulations, 1998, 63(241): 69478-69521
[4]  Kalin M, Wheeler W N, Meinrath G. The removal of uranium from mining waste water using algal/microbial biomass[J]. Journal of Environmental Radioactivity, 2004, 78(2): 151-177
[5]  朱捷, 何微, 陈晓明, 刘梅, 张娥, 柳芳, 陈浩. 湖南衡阳铀尾矿库中微生物分布调查及优势菌鉴定[J]. 安全与环境学报, 2013, 13(1): 108-112
[6]  Kazy S K, Dsouza S F, Sar P. Uranium and thorium sequestration by a Pseudomonas sp.: Mechanism and chemical characterization[J]. Journal of Hazardous Materials, 2009, 163(1): 65-72
[7]  Wang J, Hu X, Wang J, Bao Z, Xie S, Yang J. The tolerance of Rhizopus arrihizus to U(Ⅵ) and biosorption behavior of U(Ⅵ) onto R. arrihizus[J]. Biochemical Engineering Journal, 2010, 51(1): 19-23
[8]  杨晶, 谢水波, 王清良, 周星火, 胡轶, 张纯. 微生物吸附铀的机理研究现状[J]. 铀矿冶, 2006, 25(4): 192-195
[9]  杨晶. 柠檬酸杆菌吸附重金属铀的试验研究[J]. 中国给水排水, 2009, 25(23): 66-68
[10]  Martins M, Faleiro M L, Chaves S, Tenreio R, Santos E, Costa M C. Anaerobic bio-removal of uranium (Ⅵ) and chromium (Ⅵ): comparison of microbial community structure[J]. Journal of Hazardous Materials, 2010, 176(1): 1065-1072
[11]  Gonzalez M T, Merroun M L, Ben O N, Arias J M. Biosorption of uranium by Myxococcus xanthus[J]. International Biodeterioration & Biodegradation, 1997, 40(2): 107-114
[12]  许发伦, 刘芸, 廖家莉,杨吉军, 杨远友, 唐军. 土壤中球孢枝孢对铀 (Ⅵ) 的吸附[J]. 核化学与放射化学, 2013, 35(1): 34-39
[13]  严平, 谢翼飞. 重金属Cu2+抗性菌的筛选与吸附性能研究[J]. 安全与环境学报, 2012, 12(3): 39-41
[14]  Li X, Ding C, Liao J, Lan T, Li F, Zhang D, Yang J, Yang Y, Luo S, Tang J, Liu N. Biosorption of uranium on Bacillus sp. dwc-2: preliminary investigation on mechanism[J]. Journal of Environmental Radioactivity, 2014, 135: 6-12
[15]  Tsezos M, Volesky B. The mechanism of uranium biosorption by Rhizopus arrhizus[J]. Biotechnology and Bioengineering, 1982, 24(2): 385-401
[16]  Martins M, Faleiro M L, Costa A M R, Chaves S, Tenreiro R, Matos A P. Mechanism of uranium (vi) removal by two anaerobic bacterial communities[J]. Journal of Hazardous Materials, 2010, 184(1): 89-96
[17]  Gorby Y A, Lovley D R. Enzymic uranium precipitation[J]. Environmental Science & Technology, 1992, 26(1): 205-207
[18]  黄民生, 朱锦良. 微生物对水中铀的富集与还原[J]. 核技术, 2002, 25(2): 123-131
[19]  杨晶. 柠檬酸杆菌吸附重金属镉的研究[J]. 水处理技术, 2009, 35(5): 64-66
[20]  华孝挺, 田兵, 华跃进. 耐辐射奇球菌同源重组修复机制研究新进展[J]. 核农学报, 2010, 24(6): 1192-1197
[21]  王建龙, 韩英健, 钱易. 微生物吸附金属离子的研究进展[J]. 微生物学通报, 2000, 27(6): 449-452
[22]  张伟, 董发勤, 代群威. 微生物富集铀[J]. 铀矿冶, 2006, 24(4): 198-202
[23]  闵茂中, 彭新建, 王金平,尹琳, 张光辉, 徐惠芳, 李朋富. 铀的微生物成矿作用研究进展[J]. 铀矿地质, 2003, 19(5): 257-263
[24]  Francis A J. Biotransformation of uranium and other actinides in radioactive wastes[J]. Journal of Alloys and Compounds, 1998, 271(13): 78-84
[25]  Merroun M, Nedelkova M, Rossberg A, Hennig C, Selenska S. Interaction mechanisms of bacterial strains isolated from extreme habitats with uranium[J]. Radiochimica Acta, 2006, 94(94): 723-729
[26]  Macaskie L E, Dean A C R, Cheetham A K, Jakeman R J B, Dean A C R, Skarnulis A J. Cadmium accumulation by a Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells[J]. Journal of General Microbiology, 1987, 133(3): 539-544
[27]  Macaskie L E, Bonthrone K M, Yong P, Goddard D T. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation[J]. Microbiology, 2000, 146(8): 1855-1867
[28]  Sivaswamy V, Boyanov M I, Peyton B M, Viamajala S, Gerlach R, Apel W, Sani R, Dohnalkova A, Kemner K, Borch T. Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6[J].Biotechnology and Bioengineering, 2011, 108(2): 264-276
[29]  Liu M, Dong F, Yan X, Zeng W, Pang X. Biosorption of uranium by Saccharomyces cerevisiae and surface interactions under culture conditions[J]. Bioresource Technology, 2010, 101(22): 8573-8580
[30]  王建龙, 陈灿. 微生物还原放射性核素研究进展[J]. 核技术, 2006, 29(4): 286-290

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133