Robotic surgery for the management of gynecologic cancers allows for minimally invasive surgical removal of cancer-bearing organs and tissues using sophisticated surgeon-manipulated, robotic surgical instrumentation. Early on, gynecologic oncologists recognized that minimally invasive surgery was associated with less surgical morbidity and that it shortened postoperative recovery. Now, robotic surgery represents an effective alternative to conventional laparotomy. Since its widespread adoption, minimally invasive surgery has become an option not only for the morbidly obese but for women with gynecologic malignancy where conventional laparotomy has been associated with significant morbidity. As such, this paper considers indications for robotic surgery, reflects on outcomes from initial robotic surgical outcomes data, reviews cost efficacy and implications in surgical training, and discusses new roles for robotic surgery in gynecologic cancer management. 1. Introduction Management of gynecologic cancer often involves surgery followed by radiation, chemotherapy, or a combination of both therapies. It is important for the gynecologic oncologist to consider technical aspects of surgery as it pertains to a patient’s goals for surgical intervention, planned extent of surgical removal of cancer-bearing organs and tissues, a patient’s postoperative speed of recovery, and how these relate to the timing and administration of future anticancer therapies. Techniques of minimally-invasive surgery, initially involving laparoscopy and more recently robot-assisted surgery, have emerged to address these considerations [1–3]. Early on, gynecologic oncologists found that laparoscopic surgery was associated with less surgical morbidity and shortened postoperative recovery. Robotic surgery has expanded the potential cohort of women capable of undergoing minimally-invasive surgery, now cautiously including the morbidly obese, those in poor health, and those having numerous comorbidities [4–7]. Early clinical successes of robotic surgery in the management of gynecologic cancers have prompted gynecologic oncologists to consider this procedure more often. Here, we discuss use of robotic surgery specifically for gynecologic cancer management, focusing on its applications in the management of cervical, endometrial, and ovarian cancers. 2. Technical Aspects of Robotic Surgery in Gynecologic Cancer Management Robotic surgery differs substantially from laparoscopic surgery in important ways. Conventional laparoscopy utilizes a two-dimensional camera with images projected to monitors
References
[1]
H. Reich, J. DeCaprio, and F. McGlynn, “Laparoscopic hysterectomy,” Journal of Gynecologic Surgery, vol. 5, no. 2, pp. 213–217, 1989.
[2]
V. Mais, S. Ajossa, S. Guerriero, M. Mascia, E. Solla, and G. B. Melis, “Laparoscopic versus abdominal myomectomy: a prospective, randomized trial to evaluate benefits in early outcome,” American Journal of Obstetrics and Gynecology, vol. 174, no. 2, pp. 654–658, 1996.
[3]
D. B. Camarillo, T. M. Krummel, and J. K. Salisbury Jr., “Robotic technology in surgery: past, present, and future,” American Journal of Surgery, vol. 188, supplement 4, pp. 2S–15S, 2004.
[4]
A. G. Visco and A. P. Advincula, “Robotic gynecologic surgery,” Obstetrics and Gynecology, vol. 112, no. 6, pp. 1369–1384, 2008.
[5]
P. T. Ramirez, P. T. Soliman, K. M. Schmeler, R. D. Reis, and M. Frumovitz, “Laparoscopic and robotic techniques for radical hysterectomy in patients with early-stage cervical cancer,” Gynecologic Oncology, vol. 110, no. 3, pp. S21–S24, 2008.
[6]
T. M. Beste, K. H. Nelson, and J. A. Daucher, “Total laparoscopic hysterectomy utilizing a robotic surgical system,” Journal of the Society of Laparoendoscopic Surgeons, vol. 9, no. 1, pp. 13–15, 2005.
[7]
F. Marchal, P. Rauch, J. Vandromme et al., “Telerobotic-assisted laparoscopic hysterectomy for benign and oncologic pathologies: initial clinical experience with 30 patients,” Surgical Endoscopy and Other Interventional Techniques, vol. 19, no. 6, pp. 826–831, 2005.
[8]
J. Cardenas-Goicoechea, S. Adams, S. B. Bhat, and T. C. Randall, “Surgical outcomes of robotic-assisted surgical staging for endometrial cancer are equivalent to traditional laparoscopic staging at a minimally invasive surgical center,” Gynecologic Oncology, vol. 117, no. 2, pp. 224–228, 2010.
[9]
L. Mettler, M. Ibrahim, and W. Jonat, “One year of experience working with the aid of a robotic assistant (the voice-controlled optic holder AESOP) in gynaecological endoscopic surgery,” Human Reproduction, vol. 13, no. 10, pp. 2748–2750, 1998.
[10]
A. P. Advincula and T. Falcone, “Laparoscopic robotic gynecologic surgery,” Obstetrics and Gynecology Clinics of North America, vol. 31, no. 3, pp. 599–609, 2004.
[11]
A. P. Advincula, “Surgical techniques: robot-assisted laparoscopic hysterectomy with the da Vinci surgical system,” International Journal of Medical Robotics, vol. 2, no. 4, pp. 305–311, 2006.
[12]
Y. T. Kim, S. W. Kim, W. J. Hyung, S. J. Lee, E. J. Nam, and W. J. Lee, “Robotic radical hysterectomy with pelvic lymphadenectomy for cervical carcinoma: a pilot study,” Gynecologic Oncology, vol. 108, no. 2, pp. 312–316, 2008.
[13]
J. F. Magrina, R. M. Kho, A. L. Weaver, R. P. Montero, and P. M. Magtiba, “Robotic radical hysterectomy: comparison with laparoscopy and laparotomy,” Gynecologic Oncology, vol. 109, no. 1, pp. 86–91, 2008.
[14]
B. Sert and V. Abeler, “Robot-assisted laparoscopic radical hysterectomy: comparison with total laparscopic hysterectomy and abdominal radical hysterestomcy; one surgeon's experience at the Norwegian Radium Hospital,” Gynecologic Oncology, vol. 121, no. 3, pp. 600–604, 2011.
[15]
J. F. Boggess, P. A. Gehrig, L. Cantrell et al., “A case-control study of robot-assisted type III radical hysterectomy with pelvic lymph node dissection compared with open radical hysterectomy,” American Journal of Obstetrics and Gynecology, vol. 199, no. 4, pp. 357.e1–357.e7, 2008.
[16]
J. F. Boggess, P. A. Gehrig, L. Cantrell et al., “A comparative study of 3 surgical methods for hysterectomy with staging for endometrial cancer: robotic assistance, laparoscopy, laparotomy,” American Journal of Obstetrics and Gynecology, vol. 199, no. 4, pp. 360.e1–360.e9, 2008.
[17]
S. A. DeNardis, R. W. Holloway, G. E. Bigsby IV, D. P. Pikaart, S. Ahmad, and N. J. Finkler, “Robotically assisted laparoscopic hysterectomy versus total abdominal hysterectomy and lymphadenectomy for endometrial cancer,” Gynecologic Oncology, vol. 111, no. 3, pp. 412–417, 2008.
[18]
L. G. Seamon, D. E. Cohn, D. L. Richardson et al., “Robotic hysterectomy and pelvic-aortic lymphadenectomy for endometrial cancer,” Obstetrics and Gynecology, vol. 112, no. 6, pp. 1207–1213, 2008.
[19]
R. W. Holloway, S. Ahmad, S. A. DeNardis et al., “Robotic-assisted laparoscopic hysterectomy and lymphadenectomy for endometrial cancer: analysis of surgical performance,” Gynecologic Oncology, vol. 115, no. 3, pp. 447–452, 2009.
[20]
D. S. Veljovich, P. J. Paley, C. W. Drescher, E. N. Everett, C. Shah, and W. A. Peters, “Robotic surgery in gynecologic oncology: program initiation and outcomes after the first year with comparison with laparotomy for endometrial cancer staging,” American Journal of Obstetrics and Gynecology, vol. 198, no. 6, pp. 679.e1–679.e10, 2008.
[21]
S. A. Farghaly, “Robotic-assisted laparoscopic anterior pelvic exenteration in patients with advanced ovarian cancer: Farghaly's technique,” European Journal of Gynaecological Oncology, vol. 31, no. 4, pp. 361–363, 2010.
[22]
R. W. Holloway, L. A. Brudie, J. A. Rakowski, and S. Amhad, “Robotic-assisted resection of liver and diaphragm recurrent ovarian carcinoma: description of technique,” Gynecologic Oncology, vol. 120, no. 3, pp. 419–422, 2011.
[23]
J. F. Magrina, V. Zanagnolo, B. N. Noble, R. M. Kho, and P. Magitbay, “Robotic approach for ovarian cancer: perioperative and survival results and comparison with laparoscopy and laparotomy,” Gynecologic Oncology, vol. 121, no. 1, pp. 100–105, 2011.
[24]
H. M. Keys, J. A. Roberts, V. L. Brunetto et al., “A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: a Gynecologic Oncology Group study,” Gynecologic Oncology, vol. 92, no. 3, pp. 744–751, 2004.
[25]
M. E. Akar, A. J. Carrillo, J. L. Jennell, and T. M. Yalcinkaya, “Robotic-assisted laparoscopic ovarian tissue transplantation,” Fertility and Sterility, vol. 95, pp. 1120.e5–1120.e8, 2011.
[26]
J. L. Walker, M. R. Piedmonte, N. M. Spirtos et al., “Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer: Gynecologic Oncology Group Study LAP2,” Journal of Clinical Oncology, vol. 27, no. 32, pp. 5331–5336, 2009.
[27]
V. E. Von Gruenigen, K. M. Gil, H. E. Frasure, E. L. Jenison, and M. P. Hopkins, “The impact of obesity and age on quality of life in gynecologic surgery,” American Journal of Obstetrics and Gynecology, vol. 193, no. 4, pp. 1369–1375, 2005.
[28]
F. Martra, C. Kunos, H. Gibbons et al., “Adjuvant treatment and survival in obese women with endometrial cancer: an international collaborative study,” American Journal of Obstetrics and Gynecology, vol. 198, no. 1, pp. 89.e1–89.e8, 2008.
[29]
R. F. Ozols, B. N. Bundy, B. E. Greer et al., “Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study,” Journal of Clinical Oncology, vol. 21, no. 17, pp. 3194–3200, 2003.
[30]
T. Falcone, J. M. Goldberg, H. Margossian, and L. Stevens, “Robotic-assisted laparoscopic microsurgical tubal anastomosis: a human pilot study,” Fertility and Sterility, vol. 73, no. 5, pp. 1040–1042, 2000.
[31]
K. L. Molpus, J. S. Wedergren, and M. A. Carlson, “Robotically assisted endoscopic ovarian transposition,” Journal of the Society of Laparoendoscopic Surgeons, vol. 7, no. 1, pp. 59–62, 2003.
[32]
I. Al-Bedawi, M. Al-Aker, and T. Tulandi, “Robotic-assisted ovarian transposition before radiation,” Surgical Technology International, vol. 19, pp. 141–143, 2010.
[33]
J. P. Geisler, C. J. Orr, and K. J. Manahan, “Robotically assisted total laparoscopic radical trachelectomy for fertility sparing in stage IB1 adenosarcoma of the cervix,” Journal of Laparoendoscopic and Advanced Surgical Techniques, vol. 18, no. 5, pp. 727–729, 2008.
[34]
J. Persson, P. Kannisto, and T. Bossmar, “Robot-assisted abdominal laparoscopic radical trachelectomy,” Gynecologic Oncology, vol. 111, no. 3, pp. 564–567, 2008.
[35]
L. T. Chuang, D. L. Lerner, C. S. Liu, and F. R. Nezhat, “Fertility-sparing robotic-assisted radical trachelectomy and bilateral pelvic lymphadenectomy in early-stage cervical cancer,” Journal of Minimally Invasive Gynecology, vol. 15, no. 6, pp. 767–770, 2008.
[36]
P. T. Ramirez, K. M. Schmeler, A. Malpica, and P. T. Soliman, “Safety and feasibility of robotic radical trachelectomy in patients with early-stage cervical cancer,” Gynecologic Oncology, vol. 116, pp. 512–515, 2009.
[37]
C. Haie-Meder, N. Mlika-Cabanne, G. Michel et al., “Radiotherapy after ovarian transposition: ovarian function and fertility preservation,” International Journal of Radiation Oncology Biology Physics, vol. 25, no. 3, pp. 419–424, 1993.
[38]
O. Le Floch, S. S. Donaldson, and H. S. Kaplan, “Pregnancy following oophoropexy and total nodal irradiation in women with Hodgkin's disease,” Cancer, vol. 38, no. 6, pp. 2263–2268, 1976.
[39]
T. T. Sy Ortin, C. A. Shostak, and S. S. Donaldson, “Gonadal status and reproductive function following treatment for Hodgkin's disease in childhood: the Stanford Experience,” International Journal of Radiation Oncology Biology Physics, vol. 19, no. 4, pp. 873–880, 1990.
[40]
T. Falcone and M. D. Walters, “Hysterectomy for benign disease,” Obstetrics and Gynecology, vol. 111, no. 3, pp. 753–767, 2008.
[41]
G. S. Kilic, M. Borahay, and J. Y. Phelps, “Introduction of robotic surgery: pitfalls and future,” in Textbook of Gynaecological Oncology, A. Ayhan, N. Reed, M. Gultekin, and P. Dursun, Eds., pp. 606–614, Güne, Ankara, Turkey, 2011.
[42]
L. G. Seamon, D. E. Cohn, M. S. Henretta et al., “Minimally invasive comprehensive surgical staging for endometrial cancer: robotics or laparoscopy?” Gynecologic Oncology, vol. 113, no. 1, pp. 36–41, 2009.
[43]
Y. L. Lee, G. S. Kilic, and J. Y. Phelps, “Medicolegal review of liability risks for gynecologists stemming from lack of training in robot-assisted surgery,” Journal of Minimally Invasive Gynecology, vol. 18, no. 4, pp. 512–515, 2011.
[44]
F. Landoni, “Robotic surgery vs. Open surgery,” in Proceedings of the 17th International Meeting of the European Society of Gynaecological Oncology (ESGO '11), Milan, Italy, 2011.