全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Endometriosis Gene Expression Heterogeneity and Biosignature: A Phylogenetic Analysis

DOI: 10.1155/2011/719059

Full-Text   Cite this paper   Add to My Lib

Abstract:

Endometriosis is a multifactorial disease with poorly understood etiology, and reflecting an evolutionary nature where genetic alterations accumulate throughout pathogenesis. Our objective was to characterize the heterogeneous pathological process using parsimony phylogenetics. Gene expression microarray data of ovarian endometriosis obtained from NCBI database were polarized and coded into derived (abnormal) and ancestral (normal) states. Such alterations are referred to as synapomorphies in a phylogenetic sense (or biomarkers). Subsequent gene linkage was modeled by Genomatix BiblioSphere Pathway software. A list of clonally shared derived (abnormal) expressions revealed the pattern of heterogeneity among specimens. In addition, it has identified disruptions within the major regulatory pathways including those involved in cell proliferation, steroidogenesis, angiogenesis, cytoskeletal organization and integrity, and tumorigenesis, as well as cell adhesion and migration. Furthermore, the analysis supported the potential central involvement of ESR2 in the initiation of endometriosis. The pathogenesis mapping showed that eutopic and ectopic lesions have different molecular biosignatures. 1. Introduction In the USA, 10–20% of women suffer from endometriosis, with 40% developing infertility. It is a public health issue with a patient’s medical costs approximately 63% higher than those of the average woman [1]. The etiology and pathophysiology of endometriosis remains poorly understood. The hypothesis of retrograde menstruation is the oldest and most widely accepted. However, it fails to explain why some women develop endometriosis while others do not, given that some degree of retrograde menstrual flow is experienced by all women [2]. Thus, other factors such as immunology [3, 4], genetics [5], and the environment [6] may play a role in the mechanism of disease development. The genetic theory dates back to the first formal genetic study published in 1980 by Simpson et al. [5]. Numerous findings since then support a polygenic multifactorial inheritance of endometriosis caused by an interaction between multiple genes with the environment. Several studies from the OXGENE (Oxford Endometriosis GENE) group confirmed an inheritance component to endometriosis. Specifically, in one report of 100 families with endometriosis from 6 different countries, 19 mother-daughter pairs and 56 sibling pairs shared the disease [7]. A diagnostic method that screened for genetic profiles or candidate genes may benefit the patient by detecting disease earlier, improving patient

References

[1]  X. Gao, J. Outley, M. Botteman, J. Spalding, J. A. Simon, and C. L. Pashos, “Economic burden of endometriosis,” Fertility and Sterility, vol. 86, no. 6, pp. 1561–1572, 2006.
[2]  J. E. A. Sampson, “Peritoneal endometriosis due to menstrual dissemination of endometrial tissue into the peritoneal cavity,” American Journal of Obstetrics and Gynecology, vol. 14, pp. 422–469, 1927.
[3]  R. W. Steele, W. P. Dmowski, and D. J. Marmer, “Immunologic aspects of human endometriosis,” American Journal of Reproductive Immunology, vol. 6, no. 1, pp. 33–36, 1984.
[4]  H. Cakmak, O. Guzeloglu-Kayisli, U. A. Kayisli, and A. Arici, “Immune-endocrine interactions in endometriosis,” Frontiers in Bioscience, vol. 1, pp. 429–443, 2009.
[5]  J. L. Simpson, S. Elias, L. R. Malinak, and V. C. Buttram, “Heritable aspects of endometriosis. I. Genetic studies,” American Journal of Obstetrics and Gynecology, vol. 137, no. 3, pp. 327–331, 1980.
[6]  D. L. Anger and W. G. Foster, “The link between environmental toxicant exposure and endometriosis,” Frontiers in Bioscience, vol. 13, no. 4, pp. 1578–1593, 2008.
[7]  S. Kennedy, H. Mardon, and D. Barlow, “Familial endometriosis,” Journal of Assisted Reproduction and Genetics, vol. 12, no. 1, pp. 32–34, 1995.
[8]  L. A. Brinton, G. Gridley, I. Persson, J. Baron, and A. Bergqvist, “Cancer risk after a hospital discharge diagnosis of endometriosis,” American Journal of Obstetrics and Gynecology, vol. 176, no. 3, pp. 572–579, 1997.
[9]  H. Kobayashi, K. Sumimoto, N. Moniwa et al., “Risk of developing ovarian cancer among women with ovarian endometrioma: a cohort study in Shizuoka, Japan,” International Journal of Gynecological Cancer, vol. 17, no. 1, pp. 37–43, 2007.
[10]  A. Melin, P. Sparén, I. Persson, and A. Bergqvist, “Endometriosis and the risk of cancer with special emphasis on ovarian cancer,” Human Reproduction, vol. 21, no. 5, pp. 1237–1242, 2006.
[11]  F. Nezhat, M. S. Datta, V. Hanson, T. Pejovic, C. Nezhat, and C. Nezhat, “The relationship of endometriosis and ovarian malignancy: a review,” Fertility and Sterility, vol. 90, no. 5, pp. 1559–1570, 2008.
[12]  D. A. Bell, “Origins and molecular pathology of ovarian cancer,” Modern Pathology, vol. 18, supplement 2, pp. S19–S32, 2005.
[13]  P. Viganó, E. Somigliana, I. Chiodo, A. Abbiati, and P. Vercellini, “Molecular mechanisms and biological plausibility underlying the malignant transformation of endometriosis: a critical analysis,” Human Reproduction Update, vol. 12, no. 1, pp. 77–89, 2006.
[14]  H. B. Sarnat and M. G. Netsky, “Hypothesis: phylogenetic diseases of the nervous system,” Canadian Journal of Neurological Sciences, vol. 11, no. 1, pp. 29–33, 1984.
[15]  M. Abu-Asab, M. Chaouchi, and H. Amri, “Evolutionary medicine: a meaningful connection between omics, disease, and treatment,” Proteomics—Clinical Applications, vol. 2, no. 2, pp. 122–134, 2008.
[16]  M. S. Abu-Asab, M. Chaouchi, and H. Amri, “Phylogenetic modeling of heterogeneous gene-expression microarray data from cancerous specimens,” OMICS A Journal of Integrative Biology, vol. 12, no. 3, pp. 183–199, 2008.
[17]  A. Hever, R. B. Roth, P. Hevezi et al., “Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12451–12456, 2007.
[18]  M. Abu-Asab, M. Chaouchi, and H. Amri, “Phyloproteomics: what phylogenetic analysis reveals about serum proteomics,” Journal of Proteome Research, vol. 5, no. 9, pp. 2236–2240, 2006.
[19]  J. Felsenstein, “PHYLIP: phylogeny inference package (version 3.2),” Cladistics, vol. 5, pp. 164–166, 1989.
[20]  R. D. page, “TreeView: an application to display phylogenetic trees on personal computers,” Computer Applications in the Biosciences, vol. 12, no. 4, pp. 357–358, 1996.
[21]  J. Lyons-Weiler, S. Patel, M. J. Becich, and T. E. Godfrey, “Tests for finding complex patterns of differential expression in cancers: towards individualized medicine,” BMC Bioinformatics, vol. 5, p. 110, 2004.
[22]  J. Hanai, T. Mammoto, P. Seth et al., “Lipocalin 2 diminishes invasiveness and metastasis of Ras-transformed cells,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13641–13647, 2005.
[23]  R. Lim, N. Ahmed, N. Borregaard et al., “Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition,” International Journal of Cancer, vol. 120, no. 11, pp. 2426–2434, 2007.
[24]  J. Otsuka, T. Okuda, A. Sekizawa et al., “K-ras mutation may promote carcinogenesis of endometriosis leading to ovarian clear cell carcinoma,” Medical Electron Microscopy, vol. 37, no. 3, pp. 188–192, 2004.
[25]  H. R. Owen, M. Elser, E. Cheung, M. Gersbach, W. L. Kraus, and M. O. Hottiger, “MYBBP1a is a novel repressor of NF-κB,” Journal of Molecular Biology, vol. 366, no. 3, pp. 725–736, 2007.
[26]  D. Al-Azawi, M. M. Ilroy, G. Kelly et al., “Ets-2 and p160 proteins collaborate to regulate c-Myc in endocrine resistant breast cancer,” Oncogene, vol. 27, no. 21, pp. 3021–3031, 2008.
[27]  S. Battersby, H. O. D. Critchley, K. Morgan, R. P. Millar, and H. N. Jabbour, “Expression and regulation of the prokineticins (endocrine gland-derived vascular endothelial growth factor and Bv8) and their receptors in the human endometrium across the menstrual cycle,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 5, pp. 2463–2469, 2004.
[28]  R. N. Taylor, J. Yu, P. B. Torres et al., “Mechanistic and therapeutic implications of angiogenesis in endometriosis,” Reproductive Sciences, vol. 16, no. 2, pp. 140–146, 2009.
[29]  D. S. Park, H. Lee, P. G. Frank et al., “Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade,” Molecular Biology of the Cell, vol. 13, no. 10, pp. 3416–3430, 2002.
[30]  S. Rane and E. Reddy, “Janus kinases: components of multiple signaling pathways,” Oncogene, vol. 19, no. 49, pp. 5662–5679, 2000.
[31]  E. Buyuk and D. B. Seifer, “Follicular-fluid neurotrophin levels in women undergoing assisted reproductive technology for different etiologies of infertility,” Fertility and Sterility, vol. 90, no. 5, pp. 1611–1615, 2008.
[32]  G. Wang, N. Tokushige, R. Markham, and I. S. Fraser, “Rich innervation of deep infiltrating endometriosis,” Human Reproduction, vol. 24, no. 4, pp. 827–834, 2009.
[33]  Z. Chai, P. Brereton, T. Suzuki et al., “17 β-hydroxysteroid dehydrogenase type XI localizes to human steroidogenic cells,” Endocrinology, vol. 144, no. 5, pp. 2084–2091, 2003.
[34]  T. ?muc, N. Hevir, M. Ribi?-Pucelj, B. Husen, H. Thole, and T. L. Ri?ner, “Disturbed estrogen and progesterone action in ovarian endometriosis,” Molecular and Cellular Endocrinology, vol. 301, no. 1-2, pp. 59–64, 2009.
[35]  J. M. Rodriguez, M. A. Glozak, Y. Ma, and W. Cress, “Bok, Bcl-2-related ovarian killer, is cell cycle-regulated and sensitizes to stress-induced apoptosis,” Journal of Biological Chemistry, vol. 281, no. 32, pp. 22729–22735, 2006.
[36]  A. G. Yakovlev, G. Wang, W. Liu, B. Stoica, and A. I. Faden, “BOK and NOXA are essential mediators of p53-dependent apoptosis,” Journal of Biological Chemistry, vol. 279, no. 27, pp. 28367–28374, 2004.
[37]  H. W. Chung, Y. Wen, S. H. Chun, C. Nezhat, B. H. Woo, and M. Polan, “Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-3 mRNA expression in ectopic and eutopic endometrium in women with endometriosis: a rationale for endometriotic invasiveness,” Fertility and Sterility, vol. 75, no. 1, pp. 152–159, 2001.
[38]  D. P. Braun, J. Ding, F. Shaheen, J. C. Willey, N. Rana, and W. P. Dmowski, “Quantitative expression of apoptosis-regulating genes in endometrium from women with and without endometriosis,” Fertility and Sterility, vol. 87, no. 2, pp. 263–268, 2007.
[39]  T. Toki and K. Nakayama, “Proliferative activity and genetic alterations in TP53 in endometriosis,” Gynecologic and Obstetric Investigation, vol. 50, supplement 1, pp. 33–38, 2000.
[40]  P. Laudanski, J. Szamatowicz, O. Kowalczuk, M. Ku?micki, M. Grabowicz, and L. Chyczewski, “Expression of selected tumor suppressor and oncogenes in endometrium of women with endometriosis,” Human Reproduction, vol. 24, no. 8, pp. 1880–1890, 2009.
[41]  O. Bukulmez, D. B. Hardy, B. R. Carr, R. A. Word, and C. R. Mendelson, “Inflammatory status influences aromatase and steroid receptor expression in endometriosis,” Endocrinology, vol. 149, no. 3, pp. 1190–1204, 2008.
[42]  K. S. Jackson, A. Brudney, J. M. Hastings, P. A. Mavrogianis, J. J. Kim, and A. T. Fazleabas, “The altered distribution of the steroid hormone receptors and the chaperone immunophilin FKBP52 in a baboon model of endometriosis is associated with progesterone resistance during the window of uterine receptivity,” Reproductive Sciences, vol. 14, no. 2, pp. 137–150, 2007.
[43]  T. L. Ri?ner, “Estrogen metabolism and action in endometriosis,” Molecular and Cellular Endocrinology, vol. 307, no. 1-2, pp. 8–18, 2009.
[44]  K. E. Cox, M. Piva, and K. L. Sharpe-Timms, “Differential regulation of matrix metalloproteinase-3 gene expression in endometriotic lesions compared with endometrium,” Biology of Reproduction, vol. 65, no. 4, pp. 1297–1303, 2001.
[45]  N. Takai, “Expression of receptor tyrosine kinase EphB4 and its ligand ephrin-B2 is associated with malignant potential in endometrial cancer,” Oncology Reports, vol. 8, no. 3, pp. 567–573, 2001.
[46]  R. Shaco-Levy, S. Sharabi, D. Benharroch, B. Piura, and N. Sion-Vardy, “Matrix metalloproteinases 2 and 9, E-cadherin, and β-catenin expression in endometriosis, low-grade endometrial carcinoma and non-neoplastic eutopic endometrium,” European Journal of Obstetrics Gynecology and Reproductive Biology, vol. 139, no. 2, pp. 226–232, 2008.
[47]  S. Kauma, M. R. Clark, C. White, and J. Halme, “Production of fibronectin by peritoneal macrophages and concentration of fibronectin in peritoneal fluid from patients with or without endometriosis,” Obstetrics and Gynecology, vol. 72, no. 1, pp. 13–18, 1988.
[48]  S. Matsuzaki, M. Canis, C. Vaurs-Barrière, O. Boespflug-Tanguy, B. Dastugue, and G. Mage, “DNA microarray analysis of gene expression in eutopic endometrium from patients with deep endometriosis using laser capture microdissection,” Fertility and Sterility, vol. 84, supplement 2, pp. 1180–1190, 2005.
[49]  M. H. Wu, B. C. Yang, Y. C. Lee, P. L. Wu, and C. C. Hsu, “The differential expression of intercellular adhesion molecule-1 (ICAM-1) and regulation by interferon-γ during the pathogenesis of endometriosis,” American Journal of Reproductive Immunology, vol. 51, no. 5, pp. 373–380, 2004.
[50]  H. Mizutani, N. Schechter, G. Lazarus, R. A. Black, and T. S. Kupper, “Rapid and specific conversion of precursor interleukin 1β (IL-1β) to an active IL-1 species by human mast cell chymase,” Journal of Experimental Medicine, vol. 174, no. 4, pp. 821–825, 1991.
[51]  C. Maih?fner, S. Probst-Cousin, M. Bergmann, W. Neuhuber, B. Neund?rfer, and D. Heuss, “Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis,” European Journal of Neuroscience, vol. 18, no. 6, pp. 1527–1534, 2003.
[52]  P. Mukhopadhyay, M. Rajesh, H. Pan et al., “Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy,” Free Radical Biology and Medicine, vol. 48, no. 3, pp. 457–467, 2010.
[53]  D. P. Del Re, S. Miyamoto, and J. H. Brown, “RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis,” Journal of Biological Chemistry, vol. 282, no. 11, pp. 8069–8078, 2007.
[54]  T. Fernandes-Alnemri, G. Litwack, and E. S. Alnemri, “CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 β-converting enzyme,” Journal of Biological Chemistry, vol. 269, no. 49, pp. 30761–30764, 1994.
[55]  P. Vito, T. Ghayur, and L. D'Adamio, “Generation of anti-apoptotic presenilin-2 polypeptides by alternative transcription, proteolysis, and caspase-3 cleavage,” Journal of Biological Chemistry, vol. 272, no. 45, pp. 28315–28320, 1997.
[56]  Y. S. So, Y. B. Chen, I. Ivamovska et al., “BAD is a pro-survival factor prior to activation of its pro-apoptotic function,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 42240–42249, 2004.
[57]  A. T. Remaley, J. A. Stonik, S. J. Demosky et al., “Apolipoprotein specificity for lipid efflux by the human ABCAI transporter,” Biochemical and Biophysical Research Communications, vol. 280, no. 3, pp. 818–823, 2001.
[58]  S. E. Bulun, K. Zeitoun, K. Takayama et al., “Estrogen production in endometriosis and use of aromatase inhibitors to treat endometriosis,” Endocrine-Related Cancer, vol. 6, no. 2, pp. 293–301, 1999.
[59]  E. Novella-Maestre, C. Carda, A. Ruiz-Sauri, J. A. Garcia-Velasco, C. Simon, and A. Pellicer, “Identification and quantification of dopamine receptor 2 in human eutopic and ectopic endometrium: a novel molecular target for endometriosis therapy,” Biology of Reproduction, vol. 83, no. 5, pp. 866–873, 2010.
[60]  J. Fujimoto, R. Hirose, H. Sakaguchi, and T. Tamaya, “Expression of oestrogen receptor-α and -β in ovarian endometriomata,” Molecular Human Reproduction, vol. 5, no. 8, pp. 742–747, 1999.
[61]  T. ?muc, M. R. Pucelj, J. ?inkovec, B. Husen, H. Thole, and T. L. Ri?ner, “Expression analysis of the genes involved in estradiol and progesterone action in human ovarian endometriosis,” Gynecological Endocrinology, vol. 23, no. 2, pp. 105–111, 2007.
[62]  S. E. Bulun, “Endometriosis,” New England Journal of Medicine, vol. 360, no. 3, pp. 268–279, 2009.
[63]  S. E. Bulun, Y. H. Cheng, M. E. Pavone et al., “Estrogen receptor-β, estrogen receptor-α, and progesterone resistance in endometriosis,” Seminars in Reproductive Medicine, vol. 28, no. 1, pp. 36–43, 2010.
[64]  B. Borghese, D. Vaiman, D. de Ziegler, and C. Chapron, “[Endometriosis and genetics: what responsibility for the genes?],” Journal de Gynecologie, Obstetrique et Biologie de la Reproduction (Paris), vol. 39, no. 3, pp. 196–207, 2010.
[65]  L. Cobellis, N. Colacurci, E. Trabucco, C. Carpentiero, and L. Grumetto, “Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women,” Biomedical Chromatography, vol. 23, no. 11, pp. 1186–1190, 2009.
[66]  M. G. Perpora, E. Medda, A. Abballe et al., “Endometriosis and organochlorinated environmental pollutants: a case-control study on Italian women of reproductive age,” Environmental Health Perspectives, vol. 117, no. 7, pp. 1070–1075, 2009.
[67]  P. C. Huang, E. M. Tsai, W. F. Li et al., “Association between phthalate exposure and glutathione S-transferase M1 polymorphism in adenomyosis, leiomyoma and endometriosis,” Human Reproduction, vol. 25, no. 4, pp. 986–994, 2010.
[68]  B. Bianco, D. M. Christofolini, F. A. Mafra, A. Brandes, K. Zulli, and C. P. Barbosa, “+1730 G/A polymorphism of the estrogen receptor β gene (ERβ) may be an important genetic factor predisposing to endometriosis,” Acta Obstetricia et Gynecologica Scandinavica, vol. 88, no. 12, pp. 1397–1401, 2009.
[69]  Z. Wang, S. Yoshida, K. Negoro, S. Kennedy, D. Barlow, and T. Maruo, “Polymorphisms in the estrogen receptor β gene but not estrogen receptor α gene affect the risk of developing endometriosis in a Japanese population,” Fertility and Sterility, vol. 81, no. 6, pp. 1650–1656, 2004.
[70]  M. Wingfield, A. Macpherson, D. L. Healy, and P. A. W. Rogers, “Cell proliferation is increased in the endometrium of women with endometriosis,” Fertility and Sterility, vol. 64, no. 2, pp. 340–346, 1995.
[71]  A. Jurgensen, L. Mettler, N. I. Volkov, and R. Parwaresch, “Proliferative activity of the endometrium throughout the menstrual cycle in infertile women with and without endometriosis,” Fertility and Sterility, vol. 66, no. 3, pp. 369–375, 1996.
[72]  H. M. Gebel, D. P. Braun, A. Tambur, D. Frame, N. Rana, and W. P. Dmowski, “Spontaneous apoptosis of endometrial tissue is impaired in women with endometriosis,” Fertility and Sterility, vol. 69, no. 6, pp. 1042–1047, 1998.
[73]  R. K. Jones, R. F. Searle, and J. N. Bulmer, “Apoptosis and bcl-2 expression in normal human endometrium, endometriosis and adenomyosis,” Human Reproduction, vol. 13, no. 12, pp. 3496–3502, 1998.
[74]  B. A. Lessey, A. J. Castelbaum, S. W. Sawin et al., “Aberrant integrin expression in the endometrium of women with endometriosis,” Journal of Clinical Endocrinology and Metabolism, vol. 79, no. 2, pp. 643–649, 1994.
[75]  J. Sugawara, H. Yoshida, T. Fukaya, A. Yajima, and T. Murakami, “Increased secretion of hepatocyte growth factor by eutopic endometrial stromal cells in women with endometriosis,” Fertility and Sterility, vol. 68, no. 3, pp. 468–472, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133