Johnson W L. Bulk Amorphous Metal: An Emerging Engineering Material [J]. JOM, 2002, 54: 40-43.
[2]
Miracle D B. A Structural Model for Metallic Glass [J]. Nature Materials, 2004, (3): 697-702.
[3]
Ellison C J, Torkelson J M. The Distribution of Glass-Transition Temperatures in Nanoscopically Confined Glass Formers [J]. Nature Materials, 2003, (2): 695-700.
[4]
He G, Eckert J, Loser W, et al. Novel Ti-Base Nanostructure-Dendrite Composite with Enhanced Plasticity [J]. Nature Materials, 2002, (2): 33-37.
[5]
Inoue A, Takeuchi A. Recent Progress in Bulk Glassy, Nanoquasicrystalline and Nanocrystalline Alloys [J]. Mater Sci Eng, 2004, A375-A377: 16-30.
[6]
Yang Ch. Effect of Shock Wave on ZrTiCuNiBe Bulk Metallic Glass [D]. Qinhuangdao: Yanshan University, 2005. (in Chinese)
Yang C, Liu R P, Zhang B Q, et al. Void Formation and Cracking of Zr41Ti14Cu12. 5Ni10Be22. 5 Bulk Metallic Glass under Planar Shock Compression [J]. J Mater Sci, 2005, 40: 3917-3920.
[9]
Zhan Z J, Li G, Wang L M, et al. Equation of State of Zr41Ti14Cu12. 5Ni10Be22. 5 Bulk Metallic Glasses [A]//Proc 18th Inter Conf on High Pressure Science and Technology [C]. Beijing, 2001.
[10]
Zhang Z F, He G, Eckert J, et al. Fracture Mechanisms in Bulk Metallic Glassy Materials [J]. Phys Rev Lett, 2003, 91: 045505.
[11]
Zhang Z F, Eckert J, Schultz L. Difference in Compressive and Tensile Fracture Mechanisms of Zr59Cu20Al10Ni8Ti3 Bulk Metallic Glass [J]. Acta Materialia, 2003, 51: 1167-1179.
[12]
Subhash G, Dowding R J, Kecskes L J. Characterization of Uniaxial Compressive Response of Bulk Amorphous Zr-Ti-Cu-Ni-Be Alloy [J]. Mater Sci Eng, 2002, A334: 33-40.