全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

在固液混合相区物质剪切模量的讨论

DOI: 10.11858/gywlxb.2007.02.010, PP. 178-182

Keywords: 固液混合相区,剪切模量,逾渗理论,纵波声速,体波声速,熔化失稳因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

从实验和理论两个方面对处于固液相变平衡条件下物质在固液混合相区的剪切模量进行了讨论,认为物质的剪切模量在开始熔化时并不等于零。采用逾渗理论对物质在固液混合相区的固相连通性进行了计算,得到物质整体剪切模量消失的临界熔化质量分数为0.687左右。所给出的物质的熔化失稳因子F(p)能够定性的描述处于固液相变平衡条件下物质固液混合相区内相关物理参量的变化。

References

[1]  Hayes D, Hixson R S, McQueen R G. High Pressure Elastic Properties, Solid-Liquid Phase Boundary and Liquid Equation of State from Release Wave Measurements in Shock-Loaded Copper[A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999[C]. American Institute of Physics, 2000: 483S488,
[2]  Li M Sh, Chen D Q. A Constitutive Model forMaterials under High Temperature and Pressure[J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24. (in Chinese)
[3]  李茂生, 陈栋泉. 高温高压下材料的本构模型[J]. 高压物理学报, 2001, 15(1): 24.
[4]  Chhabildas L C, Furnish M D, Reinhart W D. Shock Induced Melting in Aluminum: Wave Profiles Measurements[A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999[C]. American Institute of Physics, 2000: 97-100.
[5]  Asay J R, Chhabildas L C, Dandekar D P. Shear Modulus of Shock-Loaded Polycrystalline Tungsten[J]. J Appl Phys, 1980, 51(9): 4774-4783.
[6]  Millett J C F, Bourne N K, Rosenberg Z, et al. Shear Strength Measurements in a Tungsten Alloy during Shock Loading[J]. J Appl Phys, 1999, 86(12): 6707-6709.
[7]  Zhou M, Clifton R J. Dynamic Constitutive and Failure Behavior of a Two-Phase Tungsten Composite[J]. J Appl Mech, 1997, 64: 487.
[8]  Huang H, Asay J R. Compressive Strength Measurements in Aluminum for Shock Compression over the Stress Range of 4~22GPa[J]. J Appl Phys, 2005, 98: 033524.
[9]  Millett J C F, Bourne N K, Jones I P. Shear Strength Measurements in the TiAl-Based alloy Ti-48Al-2Nb-2Cr-1B during Shock Loading[J]. J Appl Phys, 2001, 90(3): 1188-1191.
[10]  Steinberg D J, Cochran S G, Guinan M W. A Constitutive Model for Metals Applicable at High-Strain Rate[J]. J Appl Phys, 1980, 51(3): 1498-1504.
[11]  Marie-Helene Nadal, Philippe Le Poac. Continuous Model for the Shear Modulus as a Function of Pressure and Temperature up to the Melting Point: Analysis and Ultrasonic Validation[J]. J Appl Phys, 2003, 93(5): 2472-2480.
[12]  Leonid Bureakovsky, Carl W Greeff, Dean L Preston. Analytic Model of the Shear Modulus at all Temperatures and Densities[J]. Phys Rev B, 2003, 67: 094107.
[13]  Leonid Bureakovsky, Dean L Preston. Generalized Guinan-Steinberg Formula for the shear Modulus at all Pressures[J]. Phys Rev B, 2005, 71: 184118.
[14]  Ran X W, Tang W H, Tan H, et al. High Temperature and Pressure Constitutive Relation of Materials by Considering Fusion Enthalpy[J]. Acta Physuca Sinca, 2006, 55(6): (in Chinese)
[15]  冉宪文, 汤文辉, 谭华, 等. 考虑材料熔化潜热的高温高压本构[J]. 物理学报, 2006, 55(6):
[16]  Hua J S, Tan H, Jin FuQ. The Variation of Shear Modulus for Tungsten Alloy under Shock Loading[J]. Structure & Environment Engineering, 2000, (4): 52. (in Chinese)
[17]  华劲松, 谭华, 经福谦. 高温高压下钨合金的剪切模量变化[J]. 强度与环境, 2000, (4): 52.
[18]  McQueen R G, Fritz J N, Morris C E. The Velocity of Sound Behind Strong Shock Waves in 2024 Al[A]//Asay J R, Graham R A, Straub G K. Shock Waves in Condensed Matter-1983[C]. Amsterdam: North Holland Physics Publishing, 1984: 95-98.
[19]  Brown J M, Shaner J W. Rarefaction Velocities in Shocked Tantalum and the High Pressure Melting Point[A]//Asay J R, Graham R A, Straub G K. Shock Waves in Condensed Matter-1983[C]. Amsterdam: North Holland Physics Publishing, 1984: 91-94.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133