Hayes D, Hixson R S, McQueen R G. High Pressure Elastic Properties, Solid-Liquid Phase Boundary and Liquid Equation of State from Release Wave Measurements in Shock-Loaded Copper[A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999[C]. American Institute of Physics, 2000: 483S488,
[2]
Li M Sh, Chen D Q. A Constitutive Model forMaterials under High Temperature and Pressure[J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 24. (in Chinese)
Chhabildas L C, Furnish M D, Reinhart W D. Shock Induced Melting in Aluminum: Wave Profiles Measurements[A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999[C]. American Institute of Physics, 2000: 97-100.
[5]
Asay J R, Chhabildas L C, Dandekar D P. Shear Modulus of Shock-Loaded Polycrystalline Tungsten[J]. J Appl Phys, 1980, 51(9): 4774-4783.
[6]
Millett J C F, Bourne N K, Rosenberg Z, et al. Shear Strength Measurements in a Tungsten Alloy during Shock Loading[J]. J Appl Phys, 1999, 86(12): 6707-6709.
[7]
Zhou M, Clifton R J. Dynamic Constitutive and Failure Behavior of a Two-Phase Tungsten Composite[J]. J Appl Mech, 1997, 64: 487.
[8]
Huang H, Asay J R. Compressive Strength Measurements in Aluminum for Shock Compression over the Stress Range of 4~22GPa[J]. J Appl Phys, 2005, 98: 033524.
[9]
Millett J C F, Bourne N K, Jones I P. Shear Strength Measurements in the TiAl-Based alloy Ti-48Al-2Nb-2Cr-1B during Shock Loading[J]. J Appl Phys, 2001, 90(3): 1188-1191.
[10]
Steinberg D J, Cochran S G, Guinan M W. A Constitutive Model for Metals Applicable at High-Strain Rate[J]. J Appl Phys, 1980, 51(3): 1498-1504.
[11]
Marie-Helene Nadal, Philippe Le Poac. Continuous Model for the Shear Modulus as a Function of Pressure and Temperature up to the Melting Point: Analysis and Ultrasonic Validation[J]. J Appl Phys, 2003, 93(5): 2472-2480.
[12]
Leonid Bureakovsky, Carl W Greeff, Dean L Preston. Analytic Model of the Shear Modulus at all Temperatures and Densities[J]. Phys Rev B, 2003, 67: 094107.
[13]
Leonid Bureakovsky, Dean L Preston. Generalized Guinan-Steinberg Formula for the shear Modulus at all Pressures[J]. Phys Rev B, 2005, 71: 184118.
[14]
Ran X W, Tang W H, Tan H, et al. High Temperature and Pressure Constitutive Relation of Materials by Considering Fusion Enthalpy[J]. Acta Physuca Sinca, 2006, 55(6): (in Chinese)
Hua J S, Tan H, Jin FuQ. The Variation of Shear Modulus for Tungsten Alloy under Shock Loading[J]. Structure & Environment Engineering, 2000, (4): 52. (in Chinese)
McQueen R G, Fritz J N, Morris C E. The Velocity of Sound Behind Strong Shock Waves in 2024 Al[A]//Asay J R, Graham R A, Straub G K. Shock Waves in Condensed Matter-1983[C]. Amsterdam: North Holland Physics Publishing, 1984: 95-98.
[19]
Brown J M, Shaner J W. Rarefaction Velocities in Shocked Tantalum and the High Pressure Melting Point[A]//Asay J R, Graham R A, Straub G K. Shock Waves in Condensed Matter-1983[C]. Amsterdam: North Holland Physics Publishing, 1984: 91-94.