全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

钽的层裂实验数值模拟

DOI: 10.11858/gywlxb.2007.02.001, PP. 113-120

Keywords: ,层裂,率相关塑性,孔洞,对角隐式Runge-Kutta法,热粘塑性本构关系,临界层裂

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用连续介质力学基唯象模型模拟分析了钽的平板撞击层裂行为。该模型包括了材料的非线性弹性(状态方程)、率相关塑性和孔洞的形核及生长等多种效应,并且采用一种对角隐式Runge-Kutta方法来求解本构率方程组,提高了热粘塑性本构关系计算的稳定性及精度。将数值模拟结果和相关实验数据进行了对比分析,结果表明,对于样品中的拉应力峰值明显高于材料层裂强度的实验(中、高速平板撞击实验),理论模型具有较好的预估能力,但对于临界层裂问题(低速平板撞击实验),该模型对材料损伤与失效过程的描述可能不够准确,需要进一步改进。

References

[1]  Qu N Q, Chen J L. The Application of Ta and Ta Alloys [J]. World Nonferrous Metal, 1999, 5: 37-41. (in Chinese)
[2]  屈乃琴, 陈久录. 钽及钽合金的应用 [J]. 世界有色金属, 1999, 5: 37-41.
[3]  Zerilli F J, Armstrong R W. Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations [J]. J Appl Phys, 1987, 61(5): 1816-1825.
[4]  Meyers M A, Chen Y J, Marquis F D S, et al. High-Strain, High-Strain-Rate Behavior of Tantalum [J]. Metall Trans A, 1995, 26A: 2493.
[5]  Chen S R, Gray G T Ⅲ, Bingert S R. Mechanical Properties and Constitutive Relations for Tantalum and Tantalum Alloys under High-Rate Deformation [R]. LA-UR-96-0602, 1996.
[6]  Gourdin W H. Constitutive Properties of Copper and Tantalum at High Rates of Tensile Strain: Expanding Ring Results [R]. UCRL-98812, 1998.
[7]  Duprey K E, Clifton R J. Dynamic Constitutive Response of Tantalum at High Strain Rates [A]//Schmidt S C, Dandekar D P, Forbes J W. Shock Compression of Condensed Matter-1997 [C]. New York: American Institute of Physics, 1998: 475-478.
[8]  Duprey K E, Clifton R J. Pressure-Shear Response of Thin Tantalum Foils [A]//Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. New York: American Institute of Physics, 2000: 447-450.
[9]  Thissell W R, Zurek A K, Tonks D L, et al. Experimental Quantitative Damage Measurements and Void Growth Model Predictions in The Spallation of Tantalum [A]. //Furnish M D, Chhabildas L C, Hixson R S. Shock Compression of Condensed Matter-1999 [C]. New York: American Institute of Physics, 2000: 451-454.
[10]  Tonks D L, Zurek A K, Thissell W R. Spallation Modeling in Pure commercially Tantalum [A]//Staudhammer K P, Murr L E, Meyers M A. Proceedings of International Conference on Fundamental Issues and Applications of Shock-Wave and High-Strain- Rate Phenomena (EXPLOMET 2000) [C]. Albuquerque, USA: Elsevier, 2001: 517-523.
[11]  Zurek A K, Thissell W R, Trujillo C P, et al. Damage Evoluton in Ductile Metals [J]. Los Alamos Science, 2003, 28: 111-113.
[12]  Thissell W R, Tonks D L, Schwartz D S, et al. Dynamic Failure Resistance of Two Tantalum Materials with Different Melt Practice Sequences [A]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003 [C]. New York: American Institute of Physics, 2004: 495-498.
[13]  Zhang L. The Responses of Ductile Materials to Shock Wave Loadings: A New Model for Prediction of Dynamic Damage, Fracture and Structure Phase Transition [D]. Beijing: Beijing Institute of Applied Physics and Computational Mathematics, 2005. (in Chinese)
[14]  张林. 延性材料冲击响应: 动态损伤与断裂、结构相变的新模型 [D]. 北京: 北京应用物理与计算数学研究所, 2005.
[15]  Liu H F. A Handbook on Equations of State for Variuos Materials [Z]. Beijing: Beijing Institute of Applied Physics and Computational Mathematics, 2003. (in Chinese)
[16]  刘海风. 状态方程手册 [Z]. 北京: 北京应用物理与计算数学研究所, 2003.
[17]  Rajendran A M, Grove D J. A Dynamic Failure Model for Ductile Materials [R]. AFATL-TR-90-84, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133